

Web3.py

Web3.py is a python library for interacting with Ethereum. Its API is derived
from the Web3.js [https://github.com/ethereum/wiki/wiki/JavaScript-API] Javascript API and should be familiar to anyone who has
used web3.js.

Contents

	Quickstart

	Overview

	Your Ethereum Node

	Migrating your code from v3 to v4

	Filtering

	Contracts

	Providers

	Ethereum Name Service

	Middleware

	Examples

	Troubleshooting

	Web3 API

	web3.eth API

	Working with Local Private Keys

	Package Manager API

	SHH API

	Personal API

	Net API

	Version API

	TX Pool API

	Miner API

	Admin API

	Gas Price API

	ENS API

	Web3 Internals

	Conventions

	Release Notes

Indices and tables

	Index

	Module Index

	Search Page

Quickstart

	Installation

	Using Web3

	Getting Blockchain Info

Note

All code starting with a $ is meant to run on your terminal.
All code starting with a >>> is meant to run in a python interpreter,
like ipython [https://pypi.org/project/ipython/].

Installation

Web3.py can be installed (preferably in a virtualenv)
using pip as follows:

$ pip install web3

Note

If you run into problems during installation, you might have a
broken environment. See the troubleshooting guide to Set up a clean environment.

Installation from source can be done from the root of the project with the
following command.

$ pip install .

Using Web3

To use the web3 library you will need to initialize the
Web3 class.

Use the auto module to guess at common node connection options.

>>> from web3.auto import w3
>>> w3.eth.blockNumber
4000000

This w3 instance will now allow you to interact with the Ethereum
blockchain.

Note

If you get the result UnhandledRequest: No providers responded to the RPC request
then you are not connected to a node. See Why do I need to connect to a node? and
Choosing How to Connect to Your Node

Getting Blockchain Info

It’s time to start using Web3.py! Try getting all the information about the latest block.

>>> w3.eth.getBlock('latest')
{'difficulty': 1,
 'gasLimit': 6283185,
 'gasUsed': 0,
 'hash': HexBytes('0x53b983fe73e16f6ed8178f6c0e0b91f23dc9dad4cb30d0831f178291ffeb8750'),
 'logsBloom': HexBytes('0x00'),
 'miner': '0x00',
 'mixHash': HexBytes('0x00'),
 'nonce': HexBytes('0x0000000000000000'),
 'number': 0,
 'parentHash': HexBytes('0x00'),
 'proofOfAuthorityData': HexBytes('0x00dddc391ab2bf6701c74d0c8698c2e13355b2e41500'),
 'receiptsRoot': HexBytes('0x56e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421'),
 'sha3Uncles': HexBytes('0x1dcc4de8dec75d7aab85b567b6ccd41ad312451b948a7413f0a142fd40d49347'),
 'size': 622,
 'stateRoot': HexBytes('0x1f5e460eb84dc0606ab74189dbcfe617300549f8f4778c3c9081c119b5b5d1c1'),
 'timestamp': 0,
 'totalDifficulty': 1,
 'transactions': [],
 'transactionsRoot': HexBytes('0x56e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421'),
 'uncles': []}

Many of the typical things you’ll want to do will be in the w3.eth API,
so that is a good place to start.

If you want to dive straight into contracts, check out the section on Contracts,
including a Contract Deployment Example, and how to create a contract instance using
w3.eth.contract().

Overview

	Providers

	Base API

	Type Conversions

	Currency Conversions

	Addresses

	Cryptographic Hashing

	Modules

The common entrypoint for interacting with the Web3 library is the Web3
object. The web3 object provides APIs for interacting with the ethereum
blockchain, typically by connecting to a JSON-RPC server.

Providers

Providers are how web3 connects to the blockchain. The Web3 library comes
with a the following built-in providers that should be suitable for most normal
use cases.

	web3.HTTPProvider for connecting to http and https based JSON-RPC servers.

	web3.IPCProvider for connecting to ipc socket based JSON-RPC servers.

	web3.WebsocketProvider for connecting to ws and wss websocket based JSON-RPC servers.

The HTTPProvider takes the full URI where the server can be found. For
local development this would be something like http://localhost:8545.

The IPCProvider takes the filesystem path where the IPC socket can be
found. If no argument is provided it will use the default path for your
operating system.

The WebsocketProvider takes the full URI where the server can be found. For
local development this would be something like ws://127.0.0.1:8546.

>>> from web3 import Web3, HTTPProvider, IPCProvider, WebsocketProvider

Note that you should create only one RPCProvider per
process, as it recycles underlying TCP/IP network connections between
your process and Ethereum node
>>> web3 = Web3(HTTPProvider('http://localhost:8545'))

or for an IPC based connection
>>> web3 = Web3(IPCProvider())

or for Websocket based connection
>>> web3 = Web3(WebsocketProvider('ws://127.0.0.1:8546'))

Base API

The Web3 class exposes the following convenience APIs.

Type Conversions

	
Web3.toHex(primitive=None, hexstr=None, text=None)

	Takes a variety of inputs and returns it in its hexadecimal representation.
It follows the rules for converting to hex in the
JSON-RPC spec [https://github.com/ethereum/wiki/wiki/JSON-RPC#hex-value-encoding]

>>> Web3.toHex(0)
'0x0'
>>> Web3.toHex(1)
'0x1'
>>> Web3.toHex(0x0)
'0x0'
>>> Web3.toHex(0x000F)
'0xf'
>>> Web3.toHex(b'')
'0x'
>>> Web3.toHex(b'\x00\x0F')
'0x000f'
>>> Web3.toHex(False)
'0x0'
>>> Web3.toHex(True)
'0x1'
>>> Web3.toHex(hexstr='0x000F')
'0x000f'
>>> Web3.toHex(hexstr='000F')
'0x000f'
>>> Web3.toHex(text='')
'0x'
>>> Web3.toHex(text='cowmö')
'0x636f776dc3b6'

	
Web3.toText(primitive=None, hexstr=None, text=None)

	Takes a variety of inputs and returns its string equivalent.
Text gets decoded as UTF-8.

>>> Web3.toText(0x636f776dc3b6)
'cowmö'
>>> Web3.toText(b'cowm\xc3\xb6')
'cowmö'
>>> Web3.toText(hexstr='0x636f776dc3b6')
'cowmö'
>>> Web3.toText(hexstr='636f776dc3b6')
'cowmö'
>>> Web3.toText(text='cowmö')
'cowmö'

	
Web3.toBytes(primitive=None, hexstr=None, text=None)

	Takes a variety of inputs and returns its bytes equivalent.
Text gets encoded as UTF-8.

>>> Web3.toBytes(0)
b'\x00'
>>> Web3.toBytes(0x000F)
b'\x0f'
>>> Web3.toBytes(b'')
b''
>>> Web3.toBytes(b'\x00\x0F')
b'\x00\x0f'
>>> Web3.toBytes(False)
b'\x00'
>>> Web3.toBytes(True)
b'\x01'
>>> Web3.toBytes(hexstr='0x000F')
b'\x00\x0f'
>>> Web3.toBytes(hexstr='000F')
b'\x00\x0f'
>>> Web3.toBytes(text='')
b''
>>> Web3.toBytes(text='cowmö')
b'cowm\xc3\xb6'

	
Web3.toInt(primitive=None, hexstr=None, text=None)

	Takes a variety of inputs and returns its integer equivalent.

>>> Web3.toInt(0)
0
>>> Web3.toInt(0x000F)
15
>>> Web3.toInt(b'\x00\x0F')
15
>>> Web3.toInt(False)
0
>>> Web3.toInt(True)
1
>>> Web3.toInt(hexstr='0x000F')
15
>>> Web3.toInt(hexstr='000F')
15

Currency Conversions

	
Web3.toWei(value, currency)

	Returns the value in the denomination specified by the currency argument
converted to wei.

>>> Web3.toWei(1, 'ether')
1000000000000000000

	
Web3.fromWei(value, currency)

	Returns the value in wei converted to the given currency. The value is returned
as a Decimal to ensure precision down to the wei.

>>> web3.fromWei(1000000000000000000, 'ether')
Decimal('1')

Addresses

	
Web3.isAddress(value)

	Returns True if the value is one of the recognized address formats.

	Allows for both 0x prefixed and non-prefixed values.

	If the address contains mixed upper and lower cased characters this function also
checks if the address checksum is valid according to EIP55 [https://github.com/ethereum/EIPs/issues/55]

>>> web3.isAddress('0xd3CdA913deB6f67967B99D67aCDFa1712C293601')
True

	
Web3.isChecksumAddress(value)

	Returns True if the value is a valid EIP55 [https://github.com/ethereum/EIPs/issues/55] checksummed address

>>> web3.isChecksumAddress('0xd3CdA913deB6f67967B99D67aCDFa1712C293601')
True
>>> web3.isChecksumAddress('0xd3cda913deb6f67967b99d67acdfa1712c293601')
False

	
Web3.toChecksumAddress(value)

	Returns the given address with an EIP55 [https://github.com/ethereum/EIPs/issues/55] checksum.

>>> Web3.toChecksumAddress('0xd3cda913deb6f67967b99d67acdfa1712c293601')
'0xd3CdA913deB6f67967B99D67aCDFa1712C293601'

Cryptographic Hashing

	
classmethod Web3.sha3(primitive=None, hexstr=None, text=None)

	Returns the Keccak SHA256 of the given value. Text is encoded to UTF-8 before
computing the hash, just like Solidity. Any of the following are
valid and equivalent:

>>> Web3.sha3(0x747874)
>>> Web3.sha3(b'\x74\x78\x74')
>>> Web3.sha3(hexstr='0x747874')
>>> Web3.sha3(hexstr='747874')
>>> Web3.sha3(text='txt')
HexBytes('0xd7278090a36507640ea6b7a0034b69b0d240766fa3f98e3722be93c613b29d2e')

	
classmethod Web3.soliditySha3(abi_types, value)

	Returns the sha3 as it would be computed by the solidity sha3 function
on the provided value and abi_types. The abi_types value
should be a list of solidity type strings which correspond to each of the
provided values.

>>> Web3.soliditySha3(['bool'], [True])
HexBytes("0x5fe7f977e71dba2ea1a68e21057beebb9be2ac30c6410aa38d4f3fbe41dcffd2")

>>> Web3.soliditySha3(['uint8', 'uint8', 'uint8'], [97, 98, 99])
HexBytes("0x4e03657aea45a94fc7d47ba826c8d667c0d1e6e33a64a036ec44f58fa12d6c45")

>>> Web3.soliditySha3(['uint8[]'], [[97, 98, 99]])
HexBytes("0x233002c671295529bcc50b76a2ef2b0de2dac2d93945fca745255de1a9e4017e")

>>> Web3.soliditySha3(['address'], ["0x49eddd3769c0712032808d86597b84ac5c2f5614"])
HexBytes("0x2ff37b5607484cd4eecf6d13292e22bd6e5401eaffcc07e279583bc742c68882")

>>> Web3.soliditySha3(['address'], ["ethereumfoundation.eth"])
HexBytes("0x913c99ea930c78868f1535d34cd705ab85929b2eaaf70fcd09677ecd6e5d75e9")

Modules

The JSON-RPC functionality is split across multiple modules which loosely
correspond to the namespaces of the underlying JSON-RPC methods.

Your Ethereum Node

Why do I need to connect to a node?

The Ethereum protocol defines a way for people to interact with
smart contracts and each other over a network.
In order to have up-to-date information about the status of contracts,
balances, and new transactions, the protocol requires a connection
to nodes on the network. These nodes are constantly sharing new data
with each other.

Web3.py is a python library for connecting to these nodes. It does
not run its own node internally.

How do I choose which node to use?

Due to the nature of Ethereum, this is largely a question of personal preference, but
it has significant ramifications on security and usability. Further, node software is
evolving quickly, so please do your own research about the current options.
We won’t advocate for any particular node,
but list some popular options and some basic details on each.

One of the key decisions is whether to use a local node or a hosted
node. A quick summary is at Local vs Hosted Nodes.

A local node requires less trust than a hosted one.
A malicious hosted node can give you incorrect information, log your
sent transactions with your IP address, or simply go offline. Incorrect information
can cause all kinds of problems, including loss of assets.

On the other hand, with a local node your machine is individually verifying
all the transactions on the network, and providing you with the latest state.
Unfortunately, this means using up a
significant amount of disk space, and sometimes notable
bandwidth and computation.
Additionally, there is a big up-front time cost for downloading the full blockchain history.

If you want to have your
node manage keys for you (a popular option), you must use a local node.
Note that even if you run a node on your own machine, you are still trusting
the node software with any accounts you create on the node.

The most popular self-run node options are:

	geth (go-ethereum) [https://ethereum.github.io/go-ethereum/]

	parity [https://www.parity.io/]

You can find a fuller list of node software at ethdocs.org [http://ethdocs.org/en/latest/ethereum-clients/].

Some people decide that the time it takes to sync a local node from scratch is too
high, especially if they are just exploring Ethereum for the first time. One way to
work around this issue is to use a hosted node.

The most popular hosted node option is Infura.
You can connect to it as if it were a local node,
with a few caveats. It cannot (and should not) host private keys for
you, meaning that some common methods like w3.eth.sendTransaction() are not directly available. To send transactions
to a hosted node, read about Working with Local Private Keys.

Once you decide what node option you want, you need to choose which network to connect to.
Typically, you are choosing between the main network and one of the available test networks.
See Which network should I connect to?

Can I use MetaMask as a node?

MetaMask is not a node. It is an interface for interacting with a node.
Roughly, it’s what you get if you turn Web3.py into a browser extension.

By default, MetaMask connects to an Infura node.
You can also set up MetaMask to use a node that you run locally.

If you are trying to use accounts that were already created in MetaMask, see
How do I use my MetaMask accounts from Web3.py?

Which network should I connect to?

Once you have answered How do I choose which node to use? you have to pick which network
to connect to. This is easy for some scenarios: if you have ether and you want
to spend it, or you want to interact with any production smart contracts,
then you connect to the main Ethereum network.

If you want to test these things without using real ether, though, then you
need to connect to a test network. There are several test networks to
choose from. One test network, Ropsten, is the most similar to the production network.
However, spam and mining attacks have happened,
which is disruptive when you want to test out a contract.

There are some alternative networks that limit the damage of spam attacks, but
they are not standardized across node software. Geth runs their own (Rinkeby),
and Parity runs their own (Kovan). See a full comparison in this Stackexchange Q&A [https://ethereum.stackexchange.com/a/30072/1461].

So roughly, choose this way:

	If using Parity, connect to Kovan

	If using Geth, connect to Rinkeby

	If using a different node, or testing mining, connect to Ropsten

Each of their networks has their own version of Ether. Main network ether must
be purchased, naturally, but test network ether is usually available for free.
See How do I get ether for my test network?

Once you have decided which network to connect to, and set up your node for that network,
you need to decide how to connect to it. There are a handful of options in most nodes.
See Choosing How to Connect to Your Node.

Migrating your code from v3 to v4

Web3.py follows Semantic Versioning [http://semver.org], which means
that version 4 introduced backwards-incompatible changes. If your
project depends on Web3.py v3, then you’ll probably need to make some changes.

Here are the most common required updates:

Python 2 to Python 3

Only Python 3 is supported in v4. If you are running in Python 2,
it’s time to upgrade. We recommend using 2to3 which can make
most of your code compatible with Python 3, automatically.

The most important update, relevant to Web3.py, is the new bytes [https://docs.python.org/3.5/library/functions.html#bytes]
type. It is used regularly, throughout the library, whenever dealing with data
that is not guaranteed to be text.

Many different methods in Web3.py accept text or binary data, like contract methods,
transaction details, and cryptographic functions. The following example
uses sha3(), but the same pattern applies elsewhere.

In v3 & Python 2, you might have calculated the hash of binary data this way:

>>> Web3.sha3('I\xe2\x99\xa5SF')
'0x50a826df121f4d076a3686d74558f40082a8e70b3469d8e9a16ceb2a79102e5e'

Or, you might have calculated the hash of text data this way:

>>> Web3.sha3(text=u'I♥SF')
'0x50a826df121f4d076a3686d74558f40082a8e70b3469d8e9a16ceb2a79102e5e'

After switching to Python 3, these would instead be executed as:

>>> Web3.sha3(b'I\xe2\x99\xa5SF')
HexBytes('0x50a826df121f4d076a3686d74558f40082a8e70b3469d8e9a16ceb2a79102e5e')

>>> Web3.sha3(text='I♥SF')
HexBytes('0x50a826df121f4d076a3686d74558f40082a8e70b3469d8e9a16ceb2a79102e5e')

Note that the return value is different too: you can treat hexbytes.main.HexBytes [https://hexbytes.readthedocs.io/en/latest/hexbytes.html#hexbytes.main.HexBytes]
like any other bytes value, but the representation on the console shows you the hex encoding of
those bytes, for easier visual comparison.

It takes a little getting used to, but the new py3 types are much better. We promise.

Filters

Filters usually don’t work quite the way that people want them to.

The first step toward fixing them was to simplify them by removing the polling
logic. Now, you must request an update on your filters explicitly. That
means that any exceptions during the request will bubble up into your code.

In v3, those exceptions (like “filter is not found”) were swallowed silently
in the automated polling logic. Here was the invocation for
printing out new block hashes as they appear:

>>> def new_block_callback(block_hash):
... print "New Block: {0}".format(block_hash)
...
>>> new_block_filter = web3.eth.filter('latest')
>>> new_block_filter.watch(new_block_callback)

In v4, that same logic:

>>> new_block_filter = web3.eth.filter('latest')
>>> for block_hash in new_block_filter.get_new_entries():
... print("New Block: {}".format(block_hash))

The caller is responsible for polling the results from get_new_entries().
See Asynchronous Filter Polling for examples of filter-event handling with web3 v4.

TestRPCProvider and EthereumTesterProvider

These providers are fairly uncommon. If you don’t recognize the names,
you can probably skip the section.

However, if you were using web3.py for testing contracts,
you might have been using TestRPCProvider or EthereumTesterProvider.

In v4 there is a new EthereumTesterProvider, and the old v3 implementation has been
removed. Web3.py v4 uses eth_tester.main.EthereumTester under the hood, instead
of eth-testrpc. While eth-tester is still in beta, many parts are
already in better shape than testrpc, so we decided to replace it in v4.

If you were using TestRPC, or were explicitly importing EthereumTesterProvider, like:
from web3.providers.tester import EthereumTesterProvider, then you will need to update.

With v4 you should import with from web3 import EthereumTesterProvider. As before, you’ll
need to install Web3.py with the tester extra to get these features, like:

$ pip install web3[tester]

Changes to base API convenience methods

Web3.toDecimal()

In v4 Web3.toDecimal() is renamed: toInt() for improved clarity. It does not return a decimal.Decimal [https://docs.python.org/3.5/library/decimal.html#decimal.Decimal], it returns an int [https://docs.python.org/3.5/library/functions.html#int].

Removed Methods

	Web3.toUtf8 was removed for toText().

	Web3.fromUtf8 was removed for toHex().

	Web3.toAscii was removed for toBytes().

	Web3.fromAscii was removed for toHex().

	Web3.fromDecimal was removed for toHex().

Provider Access

In v4, w3.currentProvider was removed, in favor of w3.providers.

Disambiguating String Inputs

There are a number of places where an arbitrary string input might be either
a byte-string that has been hex-encoded, or unicode characters in text.
These are named hexstr and text in Web3.py.
You specify which kind of str [https://docs.python.org/3.5/library/stdtypes.html#str] you have by using the appropriate
keyword argument. See examples in Type Conversions.

In v3, some methods accepted a str [https://docs.python.org/3.5/library/stdtypes.html#str] as the first positional argument.
In v4, you must pass strings as one of hexstr or text keyword arguments.

Notable methods that no longer accept ambiguous strings:

	sha3()

	toBytes()

Contracts

	When a contract returns the ABI type string, Web3.py v4 now returns a str [https://docs.python.org/3.5/library/stdtypes.html#str]
value by decoding the underlying bytes using UTF-8.

	When a contract returns the ABI type bytes (of any length),
Web3.py v4 now returns a bytes [https://docs.python.org/3.5/library/functions.html#bytes] value

Personal API

w3.personal.signAndSendTransaction is no longer available. Use
w3.personal.sendTransaction() instead.

Filtering

The web3.eth.Eth.filter() method can be used to setup filters for:

	Pending Transactions: web3.eth.filter('pending')

	New Blocks web3.eth.filter('latest')

	Event Logs

Through the contract instance api:

event_filter = mycontract.events.myEvent.createFilter(fromBlock='latest', argument_filters={'arg1':10})

Or built manually by supplying valid filter params [https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_newfilter/]:

event_filter = web3.eth.filter({"address": contract_address})

	Attaching to an existing filter

from web3.auto import w3
existing_filter = web3.eth.filter(filter_id="0x0")

Filter Class

	
class web3.utils.filters.Filter(web3, filter_id)

	

	
Filter.filter_id

	The filter_id for this filter as returned by the eth_newFilter RPC
method when this filter was created.

	
Filter.get_new_entries()

	Retrieve new entries for this filter.

Logs will be retrieved using the
web3.eth.Eth.getFilterChanges() which returns only new entries since the last
poll.

	
Filter.get_all_entries()

	Retrieve all entries for this filter.

Logs will be retrieved using the
web3.eth.Eth.getFilterLogs() which returns all entries that match the given
filter.

	
Filter.format_entry(entry)

	Hook for subclasses to modify the format of the log entries this filter
returns, or passes to it’s callback functions.

By default this returns the entry parameter umodified.

	
Filter.is_valid_entry(entry)

	Hook for subclasses to add additional programatic filtering. The default
implementation always returns True.

Block and Transaction Filter Classes

	
class web3.utils.filters.BlockFilter(...)

	

BlockFilter is a subclass of :class:Filter.

You can setup a filter for new blocks using web3.eth.filter('latest') which
will return a new BlockFilter object.

>>> new_block_filter = web.eth.filter('latest')
>>> new_block_filter.get_new_entries()

	
class web3.utils.filters.TransactionFilter(...)

	

TransactionFilter is a subclass of :class:Filter.

You can setup a filter for new blocks using web3.eth.filter('pending') which
will return a new BlockFilter object.

>>> new_transaction_filter = web.eth.filter('pending')
>>> new_transaction_filter.get_new_entries()

Event Log Filters

You can set up a filter for event logs using the web3.py contract api:
web3.contract.Contract.events.<event_name>.createFilter(), which provides some conveniances for
creating event log filters. Refer to the following example:

event_filter = myContract.events.<event_name>.createFilter(fromBlock="latest", argument_filters={'arg1':10})
event_filter.get_new_entries()

See web3.contract.Contract.events.<event_name>.createFilter() documentation for more information.

You can set up an event log filter like the one above with web3.eth.filter by supplying a
dictionary containing the standard filter parameters. Assuming that arg1 is indexed, the
equivalent filter creation would look like:

event_signature_hash = web3.sha3(text="eventName(uint32)").hex()
event_filter = web3.eth.filter({
 "address": myContract_address,
 "topics": [event_signature_hash,
 "0x000a"],
 })

The topics argument is order-dependent. For non-anonymous events, the first item in the topic list is always the keccack hash of the event signature. Subsequent topic items are the hex encoded values for indexed event arguments. In the above example, the second item is the arg1 value 10 encoded to its hex string representation.

In addition to being order-dependent, there are a few more points to recognize when specifying topic filters:

Given a transaction log with topics [A, B], the following topic filters will yield a match:

	[] “anything”

	[A] “A in first position (and anything after)”

	[None, B] “anything in first position AND B in second position (and anything after)”

	[A, B] “A in first position AND B in second position (and anything after)”

	[[A, B], [A, B]] “(A OR B) in first position AND (A OR B) in second position (and anything after)”

See the JSON-RPC documentation for eth_newFilter [https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_newfilter] more information on the standard filter parameters.

Creating a log filter by either of the above methods will return a LogFilter instance.

	
class web3.utils.filters.LogFilter(web3, filter_id, log_entry_formatter=None, data_filter_set=None)

	

The LogFilter class is a subclass of Filter. See the Filter
documentation for inherited methods.

LogFilter provides the following additional
methods:

	
LogFilter.set_data_filters(data_filter_set)

	

Provides a means to filter on the log data, in other words the ability to filter on values from
un-indexed event arguments. The parameter data_filter_set should be a list or set of 32-byte hex encoded values.

Examples: Listening For Events

Synchronous

from web3.auto import w3
import time

def handle_event(event):
 print(event)

def log_loop(event_filter, poll_interval):
 while True:
 for event in event_filter.get_new_entries():
 handle_event(event)
 time.sleep(poll_interval)

def main():
 block_filter = w3.eth.filter('latest')
 log_loop(block_filter, 2)

if __name__ == '__main__':
 main()

Asynchronous Filter Polling

Starting with web3 version 4, the watch method was taken out of the web3 filter objects.
There are many decisions to be made when designing a system regarding threading and concurrency.
Rather than force a decision, web3 leaves these choices up to the user. Below are some example
implementations of asynchronous filter-event handling that can serve as starting points.

Single threaded concurrency with async and await

Beginning in python 3.5, the async and await built-in keywords were added. These provide a
shared api for coroutines that can be utilized by modules such as the built-in asyncio [https://docs.python.org/3/library/asyncio.html]. Below is
an example event loop using asyncio [https://docs.python.org/3/library/asyncio.html], that polls multiple web3 filter object, and passes new
entries to a handler.

from web3.auto import w3
import asyncio

def handle_event(event):
 print(event)
 # and whatever

async def log_loop(event_filter, poll_interval):
 while True:
 for event in event_filter.get_new_entries():
 handle_event(event)
 await asyncio.sleep(poll_interval)

def main():
 block_filter = w3.eth.filter('latest')
 tx_filter = w3.eth.filter('pending')
 loop = asyncio.get_event_loop()
 try:
 loop.run_until_complete(
 asyncio.gather(
 log_loop(block_filter, 2),
 log_loop(tx_filter, 2)))
 finally:
 loop.close()

if __name__ == '__main__':
 main()

Read the asyncio [https://docs.python.org/3/library/asyncio.html] documentation for more information.

Running the event loop in a separate thread

Here is an extended version of above example, where the event loop is run in a separate thread,
releasing the main function for other tasks.

from web3.auto import w3
from threading import Thread
import time
import asyncio

def handle_event(event):
 print(event)
 # and whatever

async def log_loop(event_filter, poll_interval):
 while True:
 for event in event_filter.get_new_entries():
 handle_event(event)
 time.sleep(poll_interval)

def main():
 loop = asyncio.new_event_loop()
 block_filter = w3.eth.filter('latest')
 worker = Thread(target=log_loop, args=(block_filter, 5), daemon=True)
 worker.start()
 # .. do some other stuff

if __name__ == '__main__':
 main()

Here are some other libraries that provide frameworks for writing asynchronous python:

	gevent [https://www.gevent.org/]

	twisted [https://twistedmatrix.com/]

	celery [https://www.celeryproject.org/]

Contracts

It is worth taking your time to understand all about contracts. To get started,
check out this example:

Contract Deployment Example

To run this example, you will need to install a few extra features:

	The sandbox node provided by eth-tester. You can install it with pip install -U web3[tester].

	The solc solidity compiler. See Installing the Solidity Compiler [http://solidity.readthedocs.io/en/latest/installing-solidity.html#binary-packages]

import json
import web3

from web3 import Web3
from solc import compile_source
from web3.contract import ConciseContract

Solidity source code
contract_source_code = '''
pragma solidity ^0.4.21;

contract Greeter {
 string public greeting;

 function Greeter() public {
 greeting = 'Hello';
 }

 function setGreeting(string _greeting) public {
 greeting = _greeting;
 }

 function greet() view public returns (string) {
 return greeting;
 }
}
'''

compiled_sol = compile_source(contract_source_code) # Compiled source code
contract_interface = compiled_sol['<stdin>:Greeter']

web3.py instance
w3 = Web3(Web3.EthereumTesterProvider())

set pre-funded account as sender
w3.eth.defaultAccount = w3.eth.accounts[0]

Instantiate and deploy contract
Greeter = w3.eth.contract(abi=contract_interface['abi'], bytecode=contract_interface['bin'])

Submit the transaction that deploys the contract
tx_hash = Greeter.constructor().transact()

Wait for the transaction to be mined, and get the transaction receipt
tx_receipt = w3.eth.waitForTransactionReceipt(tx_hash)

Create the contract instance with the newly-deployed address
greeter = w3.eth.contract(
 address=tx_receipt.contractAddress,
 abi=contract_interface['abi'],
)

Display the default greeting from the contract
print('Default contract greeting: {}'.format(
 greeter.functions.greet().call()
))

print('Setting the greeting to Nihao...')
tx_hash = greeter.functions.setGreeting('Nihao').transact()

Wait for transaction to be mined...
w3.eth.waitForTransactionReceipt(tx_hash)

Display the new greeting value
print('Updated contract greeting: {}'.format(
 greeter.functions.greet().call()
))

When issuing a lot of reads, try this more concise reader:
reader = ConciseContract(greeter)
assert reader.greet() == "Nihao"

Contract Factories

These factories are not intended to be initialized directly.
Instead, create contract objects using the w3.eth.contract()
method. By default, the contract factory is Contract. See the
example in ConciseContract for specifying an alternate factory.

	
class web3.contract.Contract(address)

	Contract provides a default interface for deploying and interacting with
Ethereum smart contracts.

The address parameter can be a hex address or an ENS name, like mycontract.eth.

	
class web3.contract.ConciseContract(Contract())

	This variation of Contract is designed for more succinct read access,
without making write access more wordy. This comes at a cost of losing
access to features like deploy() and properties like address. It is
recommended to use the classic Contract for those use cases.
Just to be be clear, ConciseContract only exposes contract functions and all
other Contract class methods and properties are not available with the ConciseContract
API. This includes but is not limited to contract.address, contract.abi, and
contract.deploy().

Create this type of contract by passing a Contract instance to
ConciseContract:

>>> concise = ConciseContract(myContract)

This variation invokes all methods as a call, so if the classic contract had a method like
contract.functions.owner().call(), you could call it with concise.owner() instead.

For access to send a transaction or estimate gas, you can add a keyword argument like so:

>>> concise.withdraw(amount, transact={'from': eth.accounts[1], 'gas': 100000, ...})

>>> # which is equivalent to this transaction in the classic contract:

>>> contract.functions.withdraw(amount).transact({'from': eth.accounts[1], 'gas': 100000, ...})

	
class web3.contract.ImplicitContract(Contract())

	This variation mirrors ConciseContract, but it invokes all methods as a
transaction rather than a call, so if the classic contract had a method like
contract.functions.owner.transact(), you could call it with implicit.owner() instead.

Create this type of contract by passing a Contract instance to
ImplicitContract:

>>> concise = ImplicitContract(myContract)

Properties

Each Contract Factory exposes the following properties.

	
Contract.address

	The hexadecimal encoded 20-byte address of the contract, or an ENS name.
May be None if not provided during factory creation.

	
Contract.abi

	The contract ABI array.

	
Contract.bytecode

	The contract bytecode string. May be None if not provided during
factory creation.

	
Contract.bytecode_runtime

	The runtime part of the contract bytecode string. May be None if not
provided during factory creation.

	
Contract.functions

	This provides access to contract functions as attributes. For example:
myContract.functions.MyMethod(). The exposed contract functions are classes of the
type ContractFunction.

	
Contract.events

	This provides access to contract events as attributes. For example:
myContract.events.MyEvent(). The exposed contract events are classes of the
type ContractEvent.

Methods

Each Contract Factory exposes the following methods.

	
classmethod Contract.constructor(*args, **kwargs).transact(transaction=None)

	Construct and deploy a contract by sending a new public transaction.

If provided transaction should be a dictionary conforming to the
web3.eth.sendTransaction(transaction) method. This value may not
contain the keys data or to.

If the contract takes constructor parameters they should be provided as
positional arguments or keyword arguments.

If any of the arguments specified in the ABI are an address type, they
will accept ENS names.

If a gas value is not provided, then the gas value for the
deployment transaction will be created using the web3.eth.estimateGas()
method.

Returns the transaction hash for the deploy transaction.

>>> deploy_txn = token_contract.constructor(web3.eth.coinbase, 12345).transact()
>>> txn_receipt = web3.eth.getTransactionReceipt(deploy_txn)
>>> txn_receipt['contractAddress']
'0x4c0883a69102937d6231471b5dbb6204fe5129617082792ae468d01a3f362318'

	
classmethod Contract.constructor(*args, **kwargs).estimateGas(transaction=None)

	Estimate gas for constructing and deploying the contract.

This method behaves the same as the
Contract.constructor(*args, **kwargs).transact() method,
with transaction details being passed into the end portion of the
function call, and function arguments being passed into the first portion.

Returns the amount of gas consumed which can be used as a gas estimate for
executing this transaction publicly.

Returns the gas needed to deploy the contract.

>>> token_contract.constructor(web3.eth.coinbase, 12345).estimateGas()
12563

	
classmethod Contract.constructor(*args, **kwargs).buildTransaction(transaction=None)

	Construct the contract deploy transaction bytecode data.

If the contract takes constructor parameters they should be provided as
positional arguments or keyword arguments.

If any of the args specified in the ABI are an address type, they
will accept ENS names.

Returns the transaction dictionary that you can pass to sendTransaction method.

>>> transaction = {
'gasPrice': w3.eth.gasPrice,
'chainId': None
}
>>> contract_data = token_contract.constructor(web3.eth.coinbase, 12345).buildTransaction(transaction)
>>> web3.eth.sendTransaction(contract_data)

	
Contract.events.<event name>.createFilter(fromBlock=block, toBlock=block, argument_filters={"arg1": "value"}, topics=[])

	Creates a new event filter, an instance of web3.utils.filters.LogFilter.

fromBlock is a mandatory field. Defines the starting block (exclusive) filter block range. It can be either the starting block number, or ‘latest’ for the last mined block, or ‘pending’ for unmined transactions. In the case of fromBlock, ‘latest’ and ‘pending’ set the ‘latest’ or ‘pending’ block as a static value for the starting filter block.
toBlock optional. Defaults to ‘latest’. Defines the ending block (inclusive) in the filter block range. Special values ‘latest’ and ‘pending’ set a dynamic range that always includes the ‘latest’ or ‘pending’ blocks for the filter’s upper block range.
address optional. Defaults the the contract address. The filter matches the event logs emanating from address.
argument_filters, optional. Expects a dictionary of argument names and values. When provided event logs are filtered for the event argument values. Event arguments can be both indexed or unindexed. Indexed values with be translated to their corresponding topic arguments. Unindexed arguments will be filtered using a regular expression.
topics optional, accepts the standard JSON-RPC topics argument. See the JSON-RPC documentation for eth_newFilter [https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_newfilter] more information on the topics parameters.

	
classmethod Contract.eventFilter(event_name, filter_params=None)

	

Warning

Contract.eventFilter() has been deprecated for Contract.events.<event name>.createFilter()

Creates a new web3.utils.filters.LogFilter instance.

The event_name parameter should be the name of the contract event you
want to filter on.

If provided, filter_params should be a dictionary specifying
additional filters for log entries. The following keys are supported.

	filter: dictionary - (optional) Dictionary keys should be
argument names for the Event arguments. Dictionary values should be the
value you want to filter on, or a list of values to be filtered on.
Lists of values will match log entries whose argument matches any value
in the list. Indexed and unindexed event arguments are accepted. The
processing of indexed argument values into hex encoded topics is handled
internally when using the filter parameter.

	fromBlock: integer/tag - (optional, default: “latest”) Integer
block number, or “latest” for the last mined block or “pending”,
“earliest” for not yet mined transactions.

	toBlock: integer/tag - (optional, default: “latest”) Integer
block number, or “latest” for the last mined block or “pending”,
“earliest” for not yet mined transactions.

	address: string or list of strings, each 20 Bytes -
(optional) Contract address or a list of addresses from which logs should
originate.

	topics: list of 32 byte strings or null - (optional) Array of
topics that should be used for filtering, with the keccak hash of the event
signature as the first item, and the remaining items as hex encoded
argument values. Topics are order-dependent. This parameter can also be a
list of topic lists in which case filtering will match any of the provided
topic arrays. This argument is useful when relying on the internally
generated topic lists via the filter argument is not desired. If
topics is included with the filter argument, the topics list
will be prepended to any topic lists inferred from the filter arguments.

The event topic for the event specified by event_name will be added to
the filter_params['topics'] list.

If the Contract.address attribute for this contract is
non-null, the contract address will be added to the filter_params.

	
classmethod Contract.deploy(transaction=None, args=None)

	
Warning

Deprecated: this method is deprecated in favor of
constructor(), which provides more flexibility.

Construct and send a transaction to deploy the contract.

If provided transaction should be a dictionary conforming to the
web3.eth.sendTransaction(transaction) method. This value may not
contain the keys data or to.

If the contract takes constructor arguments they should be provided as a
list via the args parameter.

If any of the args specified in the ABI are an address type, they
will accept ENS names.

If a gas value is not provided, then the gas value for the
deployment transaction will be created using the web3.eth.estimateGas()
method.

Returns the transaction hash for the deploy transaction.

	
classmethod Contract.all_functions()

	Returns a list of all the functions present in a Contract where every function is
an instance of ContractFunction.

>>> contract.all_functions()
[<Function identity(uint256,bool)>, <Function identity(int256,bool)>]

	
classmethod Contract.get_function_by_signature(signature)

	Searches for a distinct function with matching signature. Returns an instance of
ContractFunction upon finding a match. Raises ValueError if no
match is found.

>>> contract.get_function_by_signature('identity(uint256,bool)')
<Function identity(uint256,bool)>

	
classmethod Contract.find_functions_by_name(name)

	Searches for all function with matching name. Returns a list of matching functions
where every function is an instance of ContractFunction. Returns an empty
list when no match is found.

>>> contract.find_functions_by_name('identity')
[<Function identity(uint256,bool)>, <Function identity(int256,bool)>]

	
classmethod Contract.get_function_by_name(name)

	Searches for a distinct function with matching name. Returns an instance of
ContractFunction upon finding a match. Raises ValueError if no
match is found or if multiple matches are found.

>>> contract.get_function_by_name('unique_name')
<Function unique_name(uint256)>

	
classmethod Contract.get_function_by_selector(selector)

	Searches for a distinct function with matching selector.
The selector can be a hexadecimal string, bytes or int.
Returns an instance of ContractFunction upon finding a match.
Raises ValueError if no match is found.

>>> contract.get_function_by_selector('0xac37eebb')
<Function identity(uint256)'>
>>> contract.get_function_by_selector(b'\xac7\xee\xbb')
<Function identity(uint256)'>
>>> contract.get_function_by_selector(0xac37eebb)
<Function identity(uint256)'>

	
classmethod Contract.find_functions_by_args(*args)

	Searches for all function with matching args. Returns a list of matching functions
where every function is an instance of ContractFunction. Returns an empty
list when no match is found.

>>> contract.find_functions_by_args(1, True)
[<Function identity(uint256,bool)>, <Function identity(int256,bool)>]

	
classmethod Contract.get_function_by_args(*args)

	Searches for a distinct function with matching args. Returns an instance of
ContractFunction upon finding a match. Raises ValueError if no
match is found or if multiple matches are found.

>>> contract.get_function_by_args(1)
<Function unique_func_with_args(uint256)>

Note

Contract methods all_functions, get_function_by_signature, find_functions_by_name,
get_function_by_name, get_function_by_selector, find_functions_by_args and
get_function_by_args can only be used when abi is provided to the contract.

Note

Web3.py rejects the initialization of contracts that have more than one function
with the same selector or signature.
eg. blockHashAddendsInexpansible(uint256) and blockHashAskewLimitary(uint256) have the
same selector value equal to 0x00000000. A contract containing both of these functions
will be rejected.

Invoke Ambiguous Contract Functions Example

Below is an example of a contract that has multiple functions of the same name,
and the arguments are ambiguous.

>>> contract_source_code = '''
pragma solidity ^0.4.21;
contract AmbiguousDuo {
 function identity(uint256 input, bool uselessFlag) returns (uint256) {
 return input;
 }
 function identity(int256 input, bool uselessFlag) returns (int256) {
 return input;
 }
}
'''
fast forward all the steps of compiling and deploying the contract.
>>> ambiguous_contract.functions.identity(1, True) # raises ValidationError

>>> identity_func = ambiguous_contract.get_function_by_signature('identity(uint256,bool)')
>>> identity_func(1, True)
<Function identity(uint256,bool) bound to (1, True)>
>>> identity_func(1, True).call()
1

Event Log Object

The Event Log Object is a python dictionary with the following keys:

	args: Dictionary - The arguments coming from the event.

	event: String - The event name.

	logIndex: Number - integer of the log index position in the block.

	transactionIndex: Number - integer of the transactions index position
log was created from.

	transactionHash: String, 32 Bytes - hash of the transactions this log
was created from.

	address: String, 32 Bytes - address from which this log originated.

	blockHash: String, 32 Bytes - hash of the block where this log was
in. null when its pending.

	blockNumber: Number - the block number where this log was in. null
when its pending.

>>> transfer_filter = my_token_contract.eventFilter('Transfer', {'filter': {'_from': '0xdc3a9db694bcdd55ebae4a89b22ac6d12b3f0c24'}})
>>> transfer_filter.get_new_entries()
[...] # array of Event Log Objects that match the filter.

wait a while...

>>> transfer_filter.get_new_entries()
[...] # new events since the last call

>>> transfer_filter.get_all_entries()
[...] # all events that match the filter.

Contract Functions

	
class web3.contract.ContractFunction

	

The named functions exposed through the Contract.functions property are
of the ContractFunction type. This class it not to be used directly,
but instead through Contract.functions.

For example:

myContract = web3.eth.contract(address=contract_address, abi=contract_abi)
twentyone = myContract.functions.multiply7(3).call()

If you have the function name in a variable, you might prefer this alternative:

func_to_call = 'multiply7'
contract_func = myContract.functions[func_to_call]
twentyone = contract_func(3).call()

ContractFunction provides methods to interact with contract functions.
Positional and keyword arguments supplied to the contract function subclass
will be used to find the contract function by signature,
and forwarded to the contract function when applicable.

Methods

	
ContractFunction.transact(transaction)

	Execute the specified function by sending a new public transaction.

Refer to the following invocation:

myContract.functions.myMethod(*args, **kwargs).transact(transaction)

The first portion of the function call myMethod(*args, **kwargs)
selects the appropriate contract function based on the name and provided
argument. Arguments can be provided as positional arguments, keyword
arguments, or a mix of the two.

The end portion of this function call transact(transaction) takes a
single parameter which should be a python dictionary conforming to
the same format as the web3.eth.sendTransaction(transaction) method.
This dictionary may not contain the keys data.

If any of the args or kwargs specified in the ABI are an address type, they
will accept ENS names.

If a gas value is not provided, then the gas value for the
method transaction will be created using the web3.eth.estimateGas()
method.

Returns the transaction hash.

>>> token_contract.functions.transfer(web3.eth.accounts[1], 12345).transact()
"0x4e3a3754410177e6937ef1f84bba68ea139e8d1a2258c5f85db9f1cd715a1bdd"

	
ContractFunction.call(transaction, block_identifier='latest')

	Call a contract function, executing the transaction locally using the
eth_call API. This will not create a new public transaction.

Refer to the following invocation:

myContract.functions.myMethod(*args, **kwargs).call(transaction)

This method behaves the same as the ContractFunction.transact() method,
with transaction details being passed into the end portion of the
function call, and function arguments being passed into the first portion.

Returns the return value of the executed function.

>>> my_contract.functions.multiply7(3).call()
21
>>> token_contract.functions.myBalance().call({'from': web3.eth.coinbase})
12345 # the token balance for `web3.eth.coinbase`
>>> token_contract.functions.myBalance().call({'from': web3.eth.accounts[1]})
54321 # the token balance for the account `web3.eth.accounts[1]`

You can call the method at a historical block using block_identifier. Some examples:

You can call your contract method at a block number:
>>> token_contract.functions.myBalance().call(block_identifier=10)

or a number of blocks back from pending,
in this case, the block just before the latest block:
>>> token_contract.functions.myBalance().call(block_identifier=-2)

or a block hash:
>>> token_contract.functions.myBalance().call(block_identifier='0x4ff4a38b278ab49f7739d3a4ed4e12714386a9fdf72192f2e8f7da7822f10b4d')
>>> token_contract.functions.myBalance().call(block_identifier=b'O\xf4\xa3\x8b\'\x8a\xb4\x9fw9\xd3\xa4\xedN\x12qC\x86\xa9\xfd\xf7!\x92\xf2\xe8\xf7\xdax"\xf1\x0bM')

Latest is the default, so this is redundant:
>>> token_contract.functions.myBalance().call(block_identifier='latest')

You can check the state after your pending transactions (if supported by your node):
>>> token_contract.functions.myBalance().call(block_identifier='pending')

	
ContractFunction.estimateGas(transaction)

	Call a contract function, executing the transaction locally using the
eth_call API. This will not create a new public transaction.

Refer to the following invocation:

myContract.functions.myMethod(*args, **kwargs).estimateGas(transaction)

This method behaves the same as the ContractFunction.transact() method,
with transaction details being passed into the end portion of the
function call, and function arguments being passed into the first portion.

Returns the amount of gas consumed which can be used as a gas estimate for
executing this transaction publicly.

>>> my_contract.functions.multiply7(3).estimateGas()
42650

	
ContractFunction.buildTransaction(transaction)

	Builds a transaction dictionary based on the contract function call specified.

Refer to the following invocation:

myContract.functions.myMethod(*args, **kwargs).buildTransaction(transaction)

This method behaves the same as the Contract.transact() method,
with transaction details being passed into the end portion of the
function call, and function arguments being passed into the first portion.

Note

nonce is not returned as part of the transaction dictionary unless it is
specified in the first portion of the function call:

>>> math_contract.functions.increment(5).buildTransaction({'nonce': 10})

You may use getTransactionCount() to get the current nonce
for an account. Therefore a shortcut for producing a transaction dictionary with
nonce included looks like:

>>> math_contract.functions.increment(5).buildTransaction({'nonce': web3.eth.getTransactionCount('0xF5...')})

Returns a transaction dictionary. This transaction dictionary can then be sent using
sendTransaction().

Additionally, the dictionary may be used for offline transaction signing using
signTransaction().

>>> math_contract.functions.increment(5).buildTransaction({'gasPrice': 21000000000})
{
 'to': '0x6Bc272FCFcf89C14cebFC57B8f1543F5137F97dE',
 'data': '0x7cf5dab005',
 'value': 0,
 'gas': 43242,
 'gasPrice': 21000000000,
 'chainId': 1
}

Fallback Function

The Contract Factory also offers an API to interact with the fallback function, which supports four methods like
normal functions:

	
Contract.fallback.call(transaction)

	Call fallback function, executing the transaction locally using the
eth_call API. This will not create a new public transaction.

	
Contract.fallback.estimateGas(transaction)

	Call fallback function and return the gas estimation.

	
Contract.fallback.transact(transaction)

	Execute fallback function by sending a new public transaction.

	
Contract.fallback.buildTransaction(transaction)

	Builds a transaction dictionary based on the contract fallback function call.

Events

	
class web3.contract.ContractEvents

	

The named events exposed through the Contract.events property are of the ContractEvents type. This class it not to be used directly, but instead through Contract.events.

For example:

myContract = web3.eth.contract(address=contract_address, abi=contract_abi)
tx_hash = myContract.functions.myFunction().transact()
receipt = web3.eth.getTransactionReceipt(tx_hash)
myContract.events.myEvent().processReceipt(receipt)

ContractEvent provides methods to interact with contract events. Positional and keyword arguments supplied to the contract event subclass will be used to find the contract event by signature.

	
ContractEvents.myEvent(*args, **kwargs).processReceipt(transaction_receipt)

	Extracts the pertinent logs from a transaction receipt.

Returns a tuple of Event Log Objects, emitted from the event (e.g. myEvent),
with decoded ouput.

>>> tx_hash = contract.functions.myFunction(12345).transact({'to':contract_address})
>>> tx_receipt = w3.eth.getTransactionReceipt(tx_hash)
>>> rich_logs = contract.events.myEvent().processReceipt(tx_receipt)
>>> rich_logs[0]['args']
{'myArg': 12345}

Utils

	
classmethod Contract.decode_function_input(data)

	Decodes the transaction data used to invoke a smart contract function, and returns
ContractFunction and decoded parameters as dict [https://docs.python.org/3.5/library/stdtypes.html#dict].

>>> transaction = w3.eth.getTransaction('0x5798fbc45e3b63832abc4984b0f3574a13545f415dd672cd8540cd71f735db56')
>>> transaction.input
'0x612e45a3000000000000000000000000b656b2a9c3b2416437a811e07466ca712f5a5b5a00c00100093a800100116c6f6e656c792c20736f206c6f6e656c7900'
>>> contract.decode_function_input(transaction.input)
(<Function newProposal(address,uint256,string,bytes,uint256,bool)>,
 {'_recipient': '0xb656b2a9c3b2416437a811e07466ca712f5a5b5a',
 '_amount': 0,
 '_description': b'lonely, so lonely',
 '_transactionData': b'',
 '_debatingPeriod': 604800,
 '_newCurator': True})

Providers

The provider is how web3 talks to the blockchain. Providers take JSON-RPC
requests and return the response. This is normally done by submitting the
request to an HTTP or IPC socket based server.

If you are already happily connected to your Ethereum node, then you
can skip the rest of the Providers section.

Choosing How to Connect to Your Node

Most nodes have a variety of ways to connect to them. If you have not
decided what kind of node to use, head on over to How do I choose which node to use?

The most common ways to connect to your node are:

	IPC (uses local filesystem: fastest and most secure)

	Websockets (works remotely, faster than HTTP)

	HTTP (more nodes support it)

If you’re not sure how to decide, choose this way:

	If you have the option of running Web3.py on the same machine as the node, choose IPC.

	If you must connect to a node on a different computer, use Websockets.

	If your node does not support Websockets, use HTTP.

Most nodes have a way of “turning off” connection options.
We recommend turning off all connection options that you are not using.
This provides a safer setup: it reduces the
number of ways that malicious hackers can try to steal your ether.

Once you have decided how to connect, you specify the details using a Provider.
Providers are Web3.py classes that are configured for the kind of connection you want.

See:

	IPCProvider

	WebsocketProvider

	HTTPProvider

Once you have configured your provider, for example:

from web3 import Web3
my_provider = Web3.IPCProvider('/my/node/ipc/path')

Then you are ready to initialize your Web3 instance, like so:

w3 = Web3(my_provider)

Finally, you are ready to get started with Web3.py.

Automatic vs Manual Providers

The Web3 object will look for the Ethereum node in a few
standard locations if no providers are specified. Auto-detection happens
when you initialize like so:

from web3.auto import w3

which is equivalent to:

from web3 import Web3
w3 = Web3()

Sometimes, web3 cannot automatically detect where your node is.

	If you are not sure which kind of connection method to use, see
Choosing How to Connect to Your Node.

	If you know the connection method, but not the other information
needed to connect (like the path to the IPC file), you will need to look up
that information in your node’s configuration.

	If you’re not sure which node you are using, see How do I choose which node to use?

For a deeper dive into how automated detection works, see:

How Automated Detection Works

Web3 attempts to connect to nodes in the following order, using the first
succesful connection it can make:

	The connection specified by an environment variable, see Provider via Environment Variable

	IPCProvider, which looks for several IPC file locations

	HTTPProvider, which attempts to connect to “http://localhost:8545”

	None - if no providers are successful, you can still use Web3 APIs
that do not require a connection, like:

	Type Conversions

	Currency Conversions

	Addresses

	Working with Local Private Keys

	etc.

Examples Using Automated Detection

Some nodes provide APIs beyond the standards. Sometimes the same information is provided
in different ways across nodes. If you want to write code that works
across multiple nodes, you may want to look up the node type you are connected to.

For example, the following retrieves the client enode endpoint for both geth and parity:

from web3.auto import w3

connected = w3.isConnected()

if connected and w3.version.node.startswith('Parity'):
 enode = w3.parity.enode

elif connected and w3.version.node.startswith('Geth'):
 enode = w3.admin.nodeInfo['enode']

else:
 enode = None

Provider via Environment Variable

Alternatively, you can set the environment variable WEB3_PROVIDER_URI
before starting your script, and web3 will look for that provider first.

Valid formats for the this environment variable are:

	file:///path/to/node/rpc-json/file.ipc

	http://192.168.1.2:8545

	https://node.ontheweb.com

	ws://127.0.0.1:8546

Auto-initialization Provider Shortcuts

There are a couple auto-initialization shortcuts for common providers.

Infura Mainnet

To easily connect to the Infura Mainnet remote node, first register for a free
API key if you don’t have one at https://infura.io/register .

Then set the environment variable WEB3_INFURA_API_KEY with your API key:

$ export WEB3_INFURA_API_KEY=YourApiKey

If you have checked the box in the Infura UI indicating that requests need
an optional secret key, set the environment variable WEB3_INFURA_API_SECRET:

$ export WEB3_INFURA_API_SECRET=YourSecretKey

>>> from web3.auto.infura import w3

confirm that the connection succeeded
>>> w3.isConnected()
True

Geth dev Proof of Authority

To connect to a geth --dev Proof of Authority instance with defaults:

>>> from web3.auto.gethdev import w3

confirm that the connection succeeded
>>> w3.isConnected()
True

Built In Providers

Web3 ships with the following providers which are appropriate for connecting to
local and remote JSON-RPC servers.

HTTPProvider

	
class web3.providers.rpc.HTTPProvider(endpoint_uri[, request_kwargs])

	This provider handles interactions with an HTTP or HTTPS based JSON-RPC server.

	endpoint_uri should be the full URI to the RPC endpoint such as
'https://localhost:8545'. For RPC servers behind HTTP connections
running on port 80 and HTTPS connections running on port 443 the port can
be omitted from the URI.

	request_kwargs this should be a dictionary of keyword arguments which
will be passed onto the http/https request.

>>> from web3 import Web3
>>> web3 = Web3(Web3.HTTPProvider("http://127.0.0.1:8545"))

Note that you should create only one HTTPProvider per python
process, as the HTTPProvider recycles underlying TCP/IP network connections,
for better performance.

Under the hood, the HTTPProvider uses the python requests library for
making requests. If you would like to modify how requests are made, you can
use the request_kwargs to do so. A common use case for this is increasing
the timeout for each request.

>>> from web3 import Web3
>>> web3 = Web3(Web3.HTTPProvider("http://127.0.0.1:8545", request_kwargs={'timeout': 60}))

IPCProvider

	
class web3.providers.ipc.IPCProvider(ipc_path=None, testnet=False, timeout=10)

	This provider handles interaction with an IPC Socket based JSON-RPC
server.

	ipc_path is the filesystem path to the IPC socket.:56

>>> from web3 import Web3
>>> web3 = Web3(Web3.IPCProvider("~/Library/Ethereum/geth.ipc"))

If no ipc_path is specified, it will use the first IPC file
it can find from this list:

	On Linux and FreeBSD:

	~/.ethereum/geth.ipc

	~/.local/share/io.parity.ethereum/jsonrpc.ipc

	On Mac OS:

	~/Library/Ethereum/geth.ipc

	~/Library/Application Support/io.parity.ethereum/jsonrpc.ipc

	On Windows:

	\\\.\pipe\geth.ipc

	\\\.\pipe\jsonrpc.ipc

WebsocketProvider

	
class web3.providers.websocket.WebsocketProvider(endpoint_uri[, websocket_kwargs])

	This provider handles interactions with an WS or WSS based JSON-RPC server.

	endpoint_uri should be the full URI to the RPC endpoint such as
'ws://localhost:8546'.

	websocket_kwargs this should be a dictionary of keyword arguments which
will be passed onto the ws/wss websocket connection.

>>> from web3 import Web3
>>> web3 = Web3(Web3.WebsocketProvider("ws://127.0.0.1:8546"))

Under the hood, the WebsocketProvider uses the python websockets library for
making requests. If you would like to modify how requests are made, you can
use the websocket_kwargs to do so. A common use case for this is increasing
the timeout for each request.

>>> from web3 import Web3
>>> web3 = Web3(Web3.WebsocketProvider("http://127.0.0.1:8546", websocket_kwargs={'timeout': 60}))

EthereumTesterProvider

Warning

Experimental: This provider is experimental. There are still significant gaps in
functionality. However, it is the default replacement for
web3.providers.tester.EthereumTesterProvider
and is being actively developed and supported.

	
class web3.providers.eth_tester.EthereumTesterProvider(eth_tester=None)

	This provider integrates with the eth-tester library. The
eth_tester constructor argument should be an instance of the
EthereumTester class provided by the eth-tester
library. If you would like a custom eth-tester instance to test with,
see the eth-tester library documentation for details.

>>> from web3 import Web3, EthereumTesterProvider
>>> w3 = Web3(EthereumTesterProvider())

EthereumTesterProvider (legacy)

Warning

Deprecated: This provider is deprecated in favor of
EthereumTesterProvider and the newly created eth-tester.

	
class web3.providers.tester.EthereumTesterProvider

	This provider can be used for testing. It uses an ephemeral blockchain
backed by the ethereum.tester module.

>>> from web3 import Web3
>>> from web3.providers.tester import EthereumTesterProvider
>>> w3 = Web3(EthereumTesterProvider())

TestRPCProvider

Warning

Deprecated: This provider is deprecated in favor of
EthereumTesterProvider and the newly created eth-tester.

	
class web3.providers.eth_tester.TestRPCProvider

	This provider can be used for testing. It uses an ephemeral blockchain
backed by the ethereum.tester module. This provider will be slower
than the EthereumTesterProvider since it uses an HTTP server for RPC
interactions with.

AutoProvider

AutoProvider is the default used when initializing
web3.Web3 without any providers. There’s rarely a reason to use it
explicitly.

Using Multiple Providers

Web3 supports the use of multiple providers. This is useful for cases where
you wish to delegate requests across different providers. To use this feature,
simply instantiate your web3 instance with an iterable of provider instances.

>>> from web3 import Web3, HTTPProvider
>>> from . import MySpecialProvider
>>> special_provider = MySpecialProvider()
>>> infura_provider = HTTPProvider('https://ropsten.infura.io')
>>> web3 = Web3([special_provider, infura_provider])

When web3 has multiple providers it will iterate over them in order, trying the
RPC request and returning the first response it receives. Any provider which
cannot respond to a request must throw a
web3.exceptions.CannotHandleRequest exception.

If none of the configured providers are able to handle the request, then a
web3.exceptions.UnhandledRequest exception will be thrown.

Ethereum Name Service

The Ethereum Name Service is analogous to the Domain Name Service. It
enables users and developers to use human-friendly names in place of error-prone
hexadecimal addresses, content hashes, and more.

The ens module is included with web3.py. It provides an interface to look up
an address from a name, set up your own address, and more.

Setup

Create an ENS object (named ns below) in one of three ways:

	Automatic detection

	Specify an instance or list of Providers

	From an existing web3.Web3 object

automatic detection
from ens.auto import ns

or, with a provider
from web3 import IPCProvider
from ens import ENS

provider = IPCProvider(...)
ns = ENS(provider)

or, with a w3 instance
from ens import ENS

w3 = Web3(...)
ns = ENS.fromWeb3(w3)

Usage

Name info

Look up the address for an ENS name

from ens.auto import ns

look up the hex representation of the address for a name

eth_address = ns.address('jasoncarver.eth')

assert eth_address == '0x5B2063246F2191f18F2675ceDB8b28102e957458'

ens.py will assume you want a .eth name if you don't specify a full name

assert ns.address('jasoncarver') == eth_address

Get name from address

domain = ns.name('0x5B2063246F2191f18F2675ceDB8b28102e957458')

name() also accepts the bytes version of the address

assert ns.name(b'[c$o!\x91\xf1\x8f&u\xce\xdb\x8b(\x10.\x95tX') == domain

confirm that the name resolves back to the address that you looked up:

assert ns.address(domain) == '0x5B2063246F2191f18F2675ceDB8b28102e957458'

Get owner of name

eth_address = ns.owner('exchange.eth')

Set up your name

Point your name to your address

Do you want to set up your name so that address() will show the
address it points to?

ns.setup_address('jasoncarver.eth', '0x5B2063246F2191f18F2675ceDB8b28102e957458')

You must already be the owner of the domain (or its parent).

In the common case where you want to point the name to the owning
address, you can skip the address

ns.setup_address('jasoncarver.eth')

You can claim arbitrarily deep subdomains. Gas costs scale up with the
number of subdomains!

ns.setup_address('supreme.executive.power.derives.from.a.mandate.from.the.masses.jasoncarver.eth')

Wait for the transaction to be mined, then:

assert ns.address('supreme.executive.power.derives.from.a.mandate.from.the.masses.jasoncarver.eth') == \
 '0x5B2063246F2191f18F2675ceDB8b28102e957458'

Allow people to find your name using your address

Do you want to set up your address so that name() will show the
name that points to it?

This is like Caller ID. It enables you and others to take an account and
determine what name points to it. Sometimes this is referred to as
“reverse” resolution.

ns.setup_name('jasoncarver.eth', '0x5B2063246F2191f18F2675ceDB8b28102e957458')

Note

Do not rely on reverse resolution for security.

Anyone can claim any “caller ID”. Only forward resolution implies that
the owner of the name gave their stamp of approval.

If you don’t supply the address, setup_name() will assume you want the
address returned by address().

ns.setup_name('jasoncarver.eth')

If the name doesn’t already point to an address, setup_name() will
call setup_address() for you.

Wait for the transaction to be mined, then:

assert ns.name('0x5B2063246F2191f18F2675ceDB8b28102e957458') == 'jasoncarver.eth'

Middleware

Web3 manages layers of middlewares by default. They sit between the public Web3 methods and the
Providers, which handle native communication with the Ethereum client. Each layer
can modify the request and/or response. Some middlewares are enabled by default, and
others are available for optional use.

Each middleware layer gets invoked before the request reaches the provider, and then
processes the result after the provider returns, in reverse order. However, it is
possible for a middleware to return early from a
call without the request ever getting to the provider (or even reaching the middlewares
that are in deeper layers).

More information is available in the “Internals: Middlewares” section.

Default Middleware

Some middlewares are added by default if you do not supply any. The defaults
are likely to change regularly, so this list may not include the latest version’s defaults.
You can find the latest defaults in the constructor in web3/manager.py

AttributeDict

	
web3.middleware.attrdict_middleware()

	This middleware converts the output of a function from a dictionary to an AttributeDict
which enables dot-syntax access, like eth.getBlock('latest').number
in addition to eth.getBlock('latest')['number'].

.eth Name Resolution

	
web3.middleware.name_to_address_middleware()

	This middleware converts Ethereum Name Service (ENS) names into the
address that the name points to. For example sendTransaction() will
accept .eth names in the ‘from’ and ‘to’ fields.

Note

This middleware only converts ENS names if invoked with the mainnet
(where the ENS contract is deployed), for all other cases will result in an
InvalidAddress error

Pythonic

	
web3.middleware.pythonic_middleware()

	This converts arguments and returned values to python primitives,
where appropriate. For example, it converts the raw hex string returned by the RPC call
eth_blockNumber into an int.

Gas Price Strategy

	
web3.middleware.gas_price_strategy_middleware()

	This adds a gasPrice to transactions if applicable and when a gas price strategy has
been set. See Gas Price API for information about how gas price is derived.

HTTPRequestRetry

	
web3.middleware.http_retry_request_middleware()

	This middleware is a default specifically for HTTPProvider that retries failed
requests that return the following errors: ConnectionError, HTTPError, Timeout,
TooManyRedirects. Additionally there is a whitelist that only allows certain
methods to be retried in order to not resend transactions, excluded methods are:
eth_sendTransaction, personal_signAndSendTransaction, personal_sendTransaction.

Configuring Middleware

Middleware can be added, removed, replaced, and cleared at runtime. To make that easier, you
can name the middleware for later reference. Alternatively, you can use a reference to the
middleware itself.

Middleware Order

Think of the middleware as being layered in an onion, where you initiate a web3.py request at
the outermost layer of the onion, and the Ethereum node (like geth or parity) receives and responds
to the request inside the innermost layer of the onion. Here is a (simplified) diagram:

 New request from web3.py

 |
 |
 v

                                `````Layer 2``````
                         ```````                  ```````
                    `````               |                ````
                 ````                   v                    ````
              ```                                                ```
            `.               ````````Layer 1```````                `.`
          ``             ````                      `````              .`
        `.            ```               |               ```            `.`
       .`          ```                  v                  ```           `.
     `.          `.`                                         ```           .`
    ``          .`                  `Layer 0`                  ``           .`
   ``         `.               `````        ``````               .           .`
  `.         ``             ```         |        ```              .`          .
  .         ``            `.`           |           ``             .           .
 .         `.            ``       JSON-RPC call       .`            .          .`
 .         .            ``              |              .            ``          .
``         .            .               v               .            .          .
.         .`           .                                .            .          ``
.         .            .          Ethereum node         .`           .           .
.         .            .                                .            .           .
.         ``           `.               |               .            .           .
.          .            .`              |              .`            .          .
`.         .`            .`          Response         .`            .`          .
 .          .             `.`           |           `.`            `.           .
 `.          .              ```         |        ````             `.           .
  .          `.               `````     v     ````               `.           ``
   .           .`                 ```Layer 0``                  ``           `.
    .           `.                                            `.`           `.
     .            `.                    |                   `.`            `.
      .`            ```                 |                 ```             .`
       `.              ```              v             ````              `.`
         ``               ``````                 `````                 .`
           ``                   `````Layer 1`````                   `.`
             ```                                                  ```
               ````                     |                      ```
                  `````                 v                  ````
                      ``````                          `````
                            `````````Layer 2``````````

 |
 v

 Returned value in Web3.py

The middlewares are maintained in Web3.middleware_stack. See
below for the API.

When specifying middlewares in a list, or retrieving the list of middlewares, they will
be returned in the order of outermost layer first and innermost layer last. In the above
example, that means that list(w3.middleware_stack) would return the middlewares in
the order of: [2, 1, 0].

See “Internals: Middlewares” for a deeper dive to how middlewares work.

Middleware Stack API

To add or remove items in different layers, use the following API:

	
Web3.middleware_stack.add(middleware, name=None)

	Middleware will be added to the outermost layer. That means the new middleware will modify the
request first, and the response last. You can optionally name it with any hashable object,
typically a string.

>>> w3 = Web3(...)
>>> w3.middleware_stack.add(web3.middleware.pythonic_middleware)
or
>>> w3.middleware_stack.add(web3.middleware.pythonic_middleware, 'pythonic')

	
Web3.middleware_stack.inject(middleware, name=None, layer=None)

	Inject a named middleware to an arbitrary layer.

The current implementation only supports injection at the innermost or
outermost layers. Note that injecting to the outermost layer is equivalent to calling
Web3.middleware_stack.add() .

Either of these will put the pythonic middleware at the innermost layer
>>> w3 = Web3(...)
>>> w3.middleware_stack.inject(web3.middleware.pythonic_middleware, layer=0)
or
>>> w3.middleware_stack.inject(web3.middleware.pythonic_middleware, 'pythonic', layer=0)

	
Web3.middleware_stack.remove(middleware)

	Middleware will be removed from whatever layer it was in. If you added the middleware with
a name, use the name to remove it. If you added the middleware as an object, use the object
again later to remove it:

>>> w3 = Web3(...)
>>> w3.middleware_stack.remove(web3.middleware.pythonic_middleware)
or
>>> w3.middleware_stack.remove('pythonic')

	
Web3.middleware_stack.replace(old_middleware, new_middleware)

	Middleware will be replaced from whatever layer it was in. If the middleware was named, it will
continue to have the same name. If it was un-named, then you will now reference it with the new
middleware object.

>>> from web3.middleware import pythonic_middleware, attrdict_middleware
>>> w3 = Web3(...)

>>> w3.middleware_stack.replace(pythonic_middleware, attrdict_middleware)
this is now referenced by the new middleware object, so to remove it:
>>> w3.middleware_stack.remove(attrdict_middleware)

or, if it was named

>>> w3.middleware_stack.replace('pythonic', attrdict_middleware)
this is still referenced by the original name, so to remove it:
>>> w3.middleware_stack.remove('pythonic')

	
Web3.middleware_stack.clear()

	Empty all the middlewares, including the default ones.

>>> w3 = Web3(...)
>>> w3.middleware_stack.clear()
>>> assert len(w3.middleware_stack) == 0

Optional Middleware

Web3 ships with non-default middleware, for your custom use. In addition to the other ways of
Configuring Middleware, you can specify a list of middleware when initializing Web3, with:

Web3(middlewares=[my_middleware1, my_middleware2])

Warning

This will
replace the default middlewares. To keep the default functionality,
either use middleware_stack.add() from above, or add the default middlewares to your list of
new middlewares.

Below is a list of built-in middleware, which is not enabled by default.

Stalecheck

	
web3.middleware.make_stalecheck_middleware(allowable_delay)

	This middleware checks how stale the blockchain is, and interrupts calls with a failure
if the blockchain is too old.

	allowable_delay is the length in seconds that the blockchain is allowed to be
behind of time.time()

Because this middleware takes an argument, you must create the middleware
with a method call.

two_day_stalecheck = make_stalecheck_middleware(60 * 60 * 24 * 2)
web3.middleware_stack.add(two_day_stalecheck)

If the latest block in the blockchain is older than 2 days in this example, then the
middleware will raise a StaleBlockchain exception on every call except
web3.eth.getBlock().

Cache

All of the caching middlewares accept these common arguments.

	cache_class must be a callable which returns an object which implements the dictionary API.

	rpc_whitelist must be an iterable, preferably a set, of the RPC methods that may be cached.

	should_cache_fn must be a callable with the signature fn(method, params, response) which returns whether the response should be cached.

	
web3.middleware.construct_simple_cache_middleware(cache_class, rpc_whitelist, should_cache_fn)

	Constructs a middleware which will cache the return values for any RPC
method in the rpc_whitelist.

A ready to use version of this middleware can be found at
web3.middlewares.simple_cache_middleware.

	
web3.middleware.construct_time_based_cache_middleware(cache_class, cache_expire_seconds, rpc_whitelist, should_cache_fn)

	Constructs a middleware which will cache the return values for any RPC
method in the rpc_whitelist for an amount of time defined by
cache_expire_seconds.

	cache_expire_seconds should be the number of seconds a value may
remain in the cache before being evicted.

A ready to use version of this middleware can be found at
web3.middlewares.time_based_cache_middleware.

	
web3.middleware.construct_latest_block_based_cache_middleware(cache_class, average_block_time_sample_size, default_average_block_time, rpc_whitelist, should_cache_fn)

	Constructs a middleware which will cache the return values for any RPC
method in the rpc_whitelist for an amount of time defined by
cache_expire_seconds.

	average_block_time_sample_size The number of blocks which should be
sampled to determine the average block time.

	default_average_block_time The initial average block time value to
use for cases where there is not enough chain history to determine the
average block time.

A ready to use version of this middleware can be found at
web3.middlewares.latest_block_based_cache_middleware.

Geth-style Proof of Authority

This middleware is required to connect to geth --dev or the Rinkeby public network.

The easiest way to connect to a default geth --dev instance which loads the middleware is:

>>> from web3.auto.gethdev import w3

confirm that the connection succeeded
>>> w3.version.node
'Geth/v1.7.3-stable-4bb3c89d/linux-amd64/go1.9'

This example connects to a local geth --dev instance on Linux with a
unique IPC location and loads the middleware:

>>> from web3 import Web3, IPCProvider

connect to the IPC location started with 'geth --dev --datadir ~/mynode'
>>> w3 = Web3(IPCProvider('~/mynode/geth.ipc'))

>>> from web3.middleware import geth_poa_middleware

inject the poa compatibility middleware to the innermost layer
>>> w3.middleware_stack.inject(geth_poa_middleware, layer=0)

confirm that the connection succeeded
>>> w3.version.node
'Geth/v1.7.3-stable-4bb3c89d/linux-amd64/go1.9'

Why is geth_poa_middleware necessary?

There is no strong community consensus on a single Proof-of-Authority (PoA) standard yet.
Some nodes have successful experiments running, though. One is go-ethereum (geth),
which uses a prototype PoA for it’s development mode and the Rinkeby test network.

Unfortunately, it does deviate from the yellow paper specification, which constrains the
extraData field in each block to a maximum of 32-bytes. Geth’s PoA uses more than
32 bytes, so this middleware modifies the block data a bit before returning it.

Examples

	Looking up blocks

	Getting the latest block

	Currency conversions

	Looking up transactions

	Looking up receipts

	Working with Contracts

	Interacting with an ERC20 Contract

Here are some common things you might want to do with web3.

Looking up blocks

Blocks can be looked up by either their number or hash using the
web3.eth.getBlock API. Block hashes should be in their hexadecimal
representation. Block numbers

get a block by number
>>> web3.eth.getBlock(12345)
{
 'author': '0xad5c1768e5974c231b2148169da064e61910f31a',
 'difficulty': 735512610763,
 'extraData': '0x476574682f76312e302e302f6c696e75782f676f312e342e32',
 'gasLimit': 5000,
 'gasUsed': 0,
 'hash': '0x767c2bfb3bdee3f78676c1285cd757bcd5d8c272cef2eb30d9733800a78c0b6d',
 'logsBloom': '0x00',
 'miner': '0xad5c1768e5974c231b2148169da064e61910f31a',
 'mixHash': '0x31d9ec7e3855aeba37fd92aa1639845e70b360a60f77f12eff530429ef8cfcba',
 'nonce': '0x549f882c5f356f85',
 'number': 12345,
 'parentHash': '0x4b3c1d7e65a507b62734feca1ee9f27a5379e318bd52ae62de7ba67dbeac66a3',
 'receiptsRoot': '0x56e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421',
 'sealFields': ['0x31d9ec7e3855aeba37fd92aa1639845e70b360a60f77f12eff530429ef8cfcba',
 '0x549f882c5f356f85'],
 'sha3Uncles': '0x1dcc4de8dec75d7aab85b567b6ccd41ad312451b948a7413f0a142fd40d49347',
 'size': 539,
 'stateRoot': '0xca495e22ed6b88c61714d129dbc8c94f5bf966ac581c09a57c0a72d0e55e7286',
 'timestamp': 1438367030,
 'totalDifficulty': 3862140487204603,
 'transactions': [],
 'transactionsRoot': '0x56e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421',
 'uncles': [],
}
get a block by it's hash
>>> web3.eth.getBlock('0x767c2bfb3bdee3f78676c1285cd757bcd5d8c272cef2eb30d9733800a78c0b6d')
{...}

Getting the latest block

You can also retrieve the latest block using the string 'latest' in the
web3.eth.getBlock API.

>>> web3.eth.getBlock('latest')
{...}

If you want to know the latest block number you can use the
web3.eth.blockNumber property.

>>> web3.eth.blockNumber
4194803

Currency conversions

Web3 can help you convert between denominations. The following denominations are supported.

	denomination

	amount in wei

	wei

	1

	kwei

	1000

	babbage

	1000

	femtoether

	1000

	mwei

	1000000

	lovelace

	1000000

	picoether

	1000000

	gwei

	1000000000

	shannon

	1000000000

	nanoether

	1000000000

	nano

	1000000000

	szabo

	1000000000000

	microether

	1000000000000

	micro

	1000000000000

	finney

	1000000000000000

	milliether

	1000000000000000

	milli

	1000000000000000

	ether

	1000000000000000000

	kether

	1000000000000000000000

	grand

	1000000000000000000000

	mether

	1000000000000000000000000

	gether

	1000000000000000000000000000

	tether

	1000000000000000000000000000000

>>> web3.toWei('1', 'ether')
1000000000000000000
>>> web3.fromWei('1000000000000000000', 'ether')
Decimal('1')
>>> from_wei(123456789, 'ether')
Decimal('1.23456789E-10')

Looking up transactions

You can look up transactions using the web3.eth.getTransaction function.

>>> web3.eth.getTransaction('0x5c504ed432cb51138bcf09aa5e8a410dd4a1e204ef84bfed1be16dfba1b22060')
{
 'blockHash': '0x4e3a3754410177e6937ef1f84bba68ea139e8d1a2258c5f85db9f1cd715a1bdd',
 'blockNumber': 46147,
 'condition': None,
 'creates': None,
 'from': '0xa1e4380a3b1f749673e270229993ee55f35663b4',
 'gas': 21000,
 'gasPrice': 50000000000000,
 'hash': '0x5c504ed432cb51138bcf09aa5e8a410dd4a1e204ef84bfed1be16dfba1b22060',
 'input': '0x',
 'networkId': None,
 'nonce': 0,
 'publicKey': '0x376fc429acc35e610f75b14bc96242b13623833569a5bb3d72c17be7e51da0bb58e48e2462a59897cead8ab88e78709f9d24fd6ec24d1456f43aae407a8970e4',
 'r': '0x88ff6cf0fefd94db46111149ae4bfc179e9b94721fffd821d38d16464b3f71d0',
 'raw': '0xf86780862d79883d2000825208945df9b87991262f6ba471f09758cde1c0fc1de734827a69801ca088ff6cf0fefd94db46111149ae4bfc179e9b94721fffd821d38d16464b3f71d0a045e0aff800961cfce805daef7016b9b675c137a6a41a548f7b60a3484c06a33a',
 's': '0x45e0aff800961cfce805daef7016b9b675c137a6a41a548f7b60a3484c06a33a',
 'standardV': '0x1',
 'to': '0x5df9b87991262f6ba471f09758cde1c0fc1de734',
 'transactionIndex': 0,
 'v': '0x1c',
 'value': 31337,
}

If no transaction for the given hash can be found, then this function will
instead return None.

Looking up receipts

Transaction receipts can be retrieved using the web3.eth.getTransactionReceipt API.

>>> web3.eth.getTransactionReceipt('0x5c504ed432cb51138bcf09aa5e8a410dd4a1e204ef84bfed1be16dfba1b22060')
{
 'blockHash': '0x4e3a3754410177e6937ef1f84bba68ea139e8d1a2258c5f85db9f1cd715a1bdd',
 'blockNumber': 46147,
 'contractAddress': None,
 'cumulativeGasUsed': 21000,
 'gasUsed': 21000,
 'logs': [],
 'logsBloom': '0x00',
 'root': '0x96a8e009d2b88b1483e6941e6812e32263b05683fac202abc622a3e31aed1957',
 'transactionHash': '0x5c504ed432cb51138bcf09aa5e8a410dd4a1e204ef84bfed1be16dfba1b22060',
 'transactionIndex': 0,
}

If the transaction has not yet been mined then this method will return None.

Working with Contracts

Given the following solidity source file stored at contract.sol.

contract StoreVar {

 uint8 public _myVar;
 event MyEvent(uint indexed _var);

 function setVar(uint8 _var) public {
 _myVar = _var;
 MyEvent(_var);
 }

 function getVar() public view returns (uint8) {
 return _myVar;
 }

}

The following example demonstrates a few things:

	Compiling a contract from a sol file.

	Estimating gas costs of a transaction.

	Transacting with a contract function.

	Waiting for a transaction receipt to be mined.

import sys
import time
import pprint

from web3.providers.eth_tester import EthereumTesterProvider
from web3 import Web3
from solc import compile_source

def compile_source_file(file_path):
 with open(file_path, 'r') as f:
 source = f.read()

 return compile_source(source)

def deploy_contract(w3, contract_interface):
 tx_hash = w3.eth.contract(
 abi=contract_interface['abi'],
 bytecode=contract_interface['bin']).deploy()

 address = w3.eth.getTransactionReceipt(tx_hash)['contractAddress']
 return address

def wait_for_receipt(w3, tx_hash, poll_interval):
 while True:
 tx_receipt = w3.eth.getTransactionReceipt(tx_hash)
 if tx_receipt:
 return tx_receipt
 time.sleep(poll_interval)

w3 = Web3(EthereumTesterProvider())

contract_source_path = 'contract.sol'
compiled_sol = compile_source_file('contract.sol')

contract_id, contract_interface = compiled_sol.popitem()

address = deploy_contract(w3, contract_interface)
print("Deployed {0} to: {1}\n".format(contract_id, address))

store_var_contract = w3.eth.contract(
 address=address,
 abi=contract_interface['abi'])

gas_estimate = store_var_contract.functions.setVar(255).estimateGas()
print("Gas estimate to transact with setVar: {0}\n".format(gas_estimate))

if gas_estimate < 100000:
 print("Sending transaction to setVar(255)\n")
 tx_hash = store_var_contract.functions.setVar(255).transact()
 receipt = wait_for_receipt(w3, tx_hash, 1)
 print("Transaction receipt mined: \n")
 pprint.pprint(dict(receipt))
else:
 print("Gas cost exceeds 100000")

Output:

Deployed <stdin>:StoreVar to: 0xF2E246BB76DF876Cef8b38ae84130F4F55De395b

Gas estimate to transact with setVar: 32463

Sending transaction to setVar(255)

Transaction receipt mined:

{'blockHash': HexBytes('0x94e07b0b88667da284e914fa44b87d4e7fec39761be51245ef94632a3b5ab9f0'),
 'blockNumber': 2,
 'contractAddress': None,
 'cumulativeGasUsed': 43106,
 'gasUsed': 43106,
 'logs': [AttributeDict({'type': 'mined', 'logIndex': 0, 'transactionIndex': 0, 'transactionHash': HexBytes('0x3ac3518cc59d1698aa03a0bab7fb8191a4ef017aeda7429b11e8c6462b20a62a'), 'blockHash': HexBytes('0x94e07b0b88667da284e914fa44b87d4e7fec39761be51245ef94632a3b5ab9f0'), 'blockNumber': 2, 'address': '0xF2E246BB76DF876Cef8b38ae84130F4F55De395b', 'data': '0x', 'topics': [HexBytes('0x6c2b4666ba8da5a95717621d879a77de725f3d816709b9cbe9f059b8f875e284'), HexBytes('0x00ff')]})],
 'transactionHash': HexBytes('0x3ac3518cc59d1698aa03a0bab7fb8191a4ef017aeda7429b11e8c6462b20a62a'),
 'transactionIndex': 0}

Interacting with an ERC20 Contract

The ERC20 (formally EIP20 [https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md]) token standard is the most widely used standard in Ethereum. Here’s how to check the current state of an ERC20 token contract.

First, create your Python object representing the ERC20 contract.
For this example, we’ll be inspecting the Unicorns [https://etherscan.io/token/0x89205a3a3b2a69de6dbf7f01ed13b2108b2c43e7] token contract.

>>> import json
>>> from web3.auto.infura import w3

>>> ERC20_ABI = json.loads('[{"constant":true,"inputs":[],"name":"name","outputs":[{"name":"","type":"string"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":false,"inputs":[{"name":"_spender","type":"address"},{"name":"_value","type":"uint256"}],"name":"approve","outputs":[{"name":"","type":"bool"}],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":true,"inputs":[],"name":"totalSupply","outputs":[{"name":"","type":"uint256"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":false,"inputs":[{"name":"_from","type":"address"},{"name":"_to","type":"address"},{"name":"_value","type":"uint256"}],"name":"transferFrom","outputs":[{"name":"","type":"bool"}],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":true,"inputs":[],"name":"decimals","outputs":[{"name":"","type":"uint8"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":true,"inputs":[{"name":"_owner","type":"address"}],"name":"balanceOf","outputs":[{"name":"","type":"uint256"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":true,"inputs":[],"name":"symbol","outputs":[{"name":"","type":"string"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":false,"inputs":[{"name":"_to","type":"address"},{"name":"_value","type":"uint256"}],"name":"transfer","outputs":[{"name":"","type":"bool"}],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":true,"inputs":[{"name":"_owner","type":"address"},{"name":"_spender","type":"address"}],"name":"allowance","outputs":[{"name":"","type":"uint256"}],"payable":false,"stateMutability":"view","type":"function"},{"anonymous":false,"inputs":[{"indexed":true,"name":"_from","type":"address"},{"indexed":true,"name":"_to","type":"address"},{"indexed":false,"name":"_value","type":"uint256"}],"name":"Transfer","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"name":"_owner","type":"address"},{"indexed":true,"name":"_spender","type":"address"},{"indexed":false,"name":"_value","type":"uint256"}],"name":"Approval","type":"event"}]') # noqa: 501

Address field should be the checksum address at which the ERC20 contract was deployed
>>> erc20 = w3.eth.contract(address='0x89205A3A3b2A69De6Dbf7f01ED13B2108B2c43e7', abi=ERC20_ABI)

Fetch various data about the current state of the ERC20 contract.

>>> erc20.functions.name().call()
'Unicorns'
>>> erc20.functions.symbol().call()
'🦄'
>>> erc20.functions.decimals().call()
0
>>> assert erc20.functions.totalSupply().call() > 2046

Get the balance of an account address.

>>> erc20.functions.balanceOf('0xD1220A0cf47c7B9Be7A2E6BA89F429762e7b9aDb').call()
1

Calculate the token count from the token balance of an account address.

>>> from decimal import Decimal

Most applications expect *exact* results, so using the Decimal library,
with default precision of 28, is usually sufficient to avoid any rounding error.
>>> decimals = erc20.functions.decimals().call()
>>> balance = erc20.functions.balanceOf('0xD1220A0cf47c7B9Be7A2E6BA89F429762e7b9aDb').call()
>>> balance / Decimal(10 ** decimals)
Decimal('1')

Balance is always an integer in the currency’s smallest natural unit (equivalent to ‘wei’ for ether). Token balance is typically used only for backend calculations.

Token count may be a integer or fraction in the currency’s primary unit (equivalent to ‘eth’ for ether). Token count is typically displayed to the user on the front-end since it is more readable.

Troubleshooting

Set up a clean environment

Many things can cause a broken environment. You might be on an unsupported version of Python.
Another package might be installed that has a name or version conflict.
Often, the best way to guarantee a correct environment is with virtualenv, like:

Install pip if it is not available:
$ which pip || curl https://bootstrap.pypa.io/get-pip.py | python

Install virtualenv if it is not available:
$ which virtualenv || pip install --upgrade virtualenv

If the above command displays an error, you can try installing as root:
$ sudo pip install virtualenv

Create a virtual environment:
$ virtualenv -p python3 ~/.venv-py3

Activate your new virtual environment:
$ source ~/.venv-py3/bin/activate

With virtualenv active, make sure you have the latest packaging tools
$ pip install --upgrade pip setuptools

Now we can install web3.py...
$ pip install --upgrade web3

Note

Remember that each new terminal session requires you to reactivate your virtualenv, like:
$ source ~/.venv-py3/bin/activate

How do I use my MetaMask accounts from Web3.py?

Often you don’t need to do this, just make a new account in Web3.py,
and transfer funds from your MetaMask account into it. But if you must…

Export your private key from MetaMask, and use
the local private key tools in Web3.py to sign and send transactions.

See how to export your private key [https://ethereum.stackexchange.com/questions/33053/what-is-a-private-key-in-an-ethereum-wallet-like-metamask-and-how-do-i-find-it]
and Working with Local Private Keys.

How do I get ether for my test network?

Test networks usually have something called a “faucet” to
help get test ether to people who want to use it. The faucet
simply sends you test ether when you visit a web page, or ping a chat bot, etc.

Each test network has its own version of test ether, so each one
must maintain its own faucet. If you’re not sure which test network
to use, see Which network should I connect to?

Faucet mechanisms tend to come and go, so if any information here is
out of date, try the Ethereum Stackexchange [https://ethereum.stackexchange.com/].
Here are some links to testnet ether instructions (in no particular order):

	Kovan [https://github.com/kovan-testnet/faucet]

	Rinkeby [https://www.rinkeby.io/#faucet]

	Ropsten:

	ropsten.be [https://faucet.ropsten.be/]

	Kyber [https://faucet.kyber.network/]

Web3 API

	Providers

	Encoding and Decoding Helpers

	Currency Conversions

	Addresses

	RPC APIS

	
class web3.Web3(provider)

	

Each web3 instance exposes the following APIs.

Providers

	
Web3.HTTPProvider

	Convenience API to access web3.providers.rpc.HTTPProvider

	
Web3.IPCProvider

	Convenience API to access web3.providers.ipc.IPCProvider

	
Web3.setProviders(provider)

	Updates the current web3 instance with the new list of providers. It
also accepts a single provider.

Encoding and Decoding Helpers

See Type Conversions

Currency Conversions

See Currency Conversions

Addresses

See Addresses

RPC APIS

Each web3 instance also exposes these namespaced APIs.

	
Web3.eth

	See web3.eth API

	
Web3.shh

	See SHH API

	
Web3.personal

	See Personal API

	
Web3.version

	See Version API

	
Web3.txpool

	See TX Pool API

	
Web3.miner

	See Miner API

	
Web3.admin

	See Admin API

web3.eth API

	
class web3.eth.Eth

	

The web3.eth object exposes the following properties and methods to
interact with the RPC APIs under the eth_ namespace.

Often, when a property or method returns a mapping of keys to values, it
will return an AttributeDict which acts like a dict but you can
access the keys as attributes and cannot modify its fields. For example,
you can find the latest block number in these two ways:

>>> block = web3.eth.getBlock('latest')
AttributeDict({
 'hash': '0xe8ad537a261e6fff80d551d8d087ee0f2202da9b09b64d172a5f45e818eb472a',
 'number': 4022281,
 # ... etc ...
})

>>> block['number']
4022281
>>> block.number
4022281

>>> block.number = 4022282
Traceback # ... etc ...
TypeError: This data is immutable -- create a copy instead of modifying

Properties

The following properties are available on the web3.eth namespace.

	
Eth.defaultAccount

	The ethereum address that will be used as the default from address for
all transactions.

	
Eth.defaultBlock

	The default block number that will be used for any RPC methods that accept
a block identifier. Defaults to 'latest'.

	
Eth.syncing

	
	Delegates to eth_syncing RPC Method

Returns either False if the node is not syncing or a dictionary
showing sync status.

>>> web3.eth.syncing
AttributeDict({
 'currentBlock': 2177557,
 'highestBlock': 2211611,
 'knownStates': 0,
 'pulledStates': 0,
 'startingBlock': 2177365,
})

	
Eth.coinbase

	
	Delegates to eth_coinbase RPC Method

Returns the current Coinbase address.

>>> web3.eth.coinbase
'0xd3cda913deb6f67967b99d67acdfa1712c293601'

	
Eth.mining

	
	Delegates to eth_mining RPC Method

Returns boolean as to whether the node is currently mining.

>>> web3.eth.mining
False

	
Eth.hashrate

	
	Delegates to eth_hashrate RPC Method

Returns the current number of hashes per second the node is mining with.

>>> web3.eth.hashrate
906

	
Eth.gasPrice

	
	Delegates to eth_gasPrice RPC Method

Returns the current gas price in Wei.

>>> web3.eth.gasPrice
20000000000

	
Eth.accounts

	
	Delegates to eth_accounts RPC Method

Returns the list of known accounts.

>>> web3.eth.accounts
['0xd3cda913deb6f67967b99d67acdfa1712c293601']

	
Eth.blockNumber

	
	Delegates to eth_blockNumber RPC Method

Returns the number of the most recent block

>>> web3.eth.blockNumber
2206939

Methods

The following methods are available on the web3.eth namespace.

	
Eth.getBalance(account, block_identifier=eth.defaultBlock)

	
	Delegates to eth_getBalance RPC Method

Returns the balance of the given account at the block specified by
block_identifier.

account may be a hex address or an ENS name

>>> web3.eth.getBalance('0xd3cda913deb6f67967b99d67acdfa1712c293601')
77320681768999138915

	
Eth.getStorageAt(account, position, block_identifier=eth.defaultBlock)

	
	Delegates to eth_getStorageAt RPC Method

Returns the value from a storage position for the given account at the
block specified by block_identifier.

account may be a hex address or an ENS name

>>> web3.eth.getStorageAt('0x6c8f2a135f6ed072de4503bd7c4999a1a17f824b', 0)
'0x00120a0b063499d4'

	
Eth.getCode(account, block_identifier=eth.defaultBlock)

	
	Delegates to eth_getCode RPC Method

Returns the bytecode for the given account at the block specified by
block_identifier.

account may be a hex address or an ENS name

For a contract address.
>>> web3.eth.getCode('0x6c8f2a135f6ed072de4503bd7c4999a1a17f824b')
'0x6060604052361561027c5760e060020a60003504630199.....'
For a private key address.
>>> web3.eth.getCode('0xd3cda913deb6f67967b99d67acdfa1712c293601')
'0x'

	
Eth.getBlock(block_identifier=eth.defaultBlock, full_transactions=False)

	
	Delegates to eth_getBlockByNumber or eth_getBlockByHash RPC Methods

Returns the block specified by block_identifier. Delegates to
eth_getBlockByNumber if block_identifier is an integer or one of
the predefined block parameters 'latest', 'earliest', 'pending',
otherwise delegates to eth_getBlockByHash.

If full_transactions is True then the 'transactions' key will
contain full transactions objects. Otherwise it will be an array of
transaction hashes.

>>> web3.eth.getBlock(2000000)
AttributeDict({
 'difficulty': 49824742724615,
 'extraData': '0xe4b883e5bda9e7a59ee4bb99e9b1bc',
 'gasLimit': 4712388,
 'gasUsed': 21000,
 'hash': '0xc0f4906fea23cf6f3cce98cb44e8e1449e455b28d684dfa9ff65426495584de6',
 'logsBloom': '0x00',
 'miner': '0x61c808d82a3ac53231750dadc13c777b59310bd9',
 'nonce': '0x3b05c6d5524209f1',
 'number': 2000000,
 'parentHash': '0x57ebf07eb9ed1137d41447020a25e51d30a0c272b5896571499c82c33ecb7288',
 'receiptRoot': '0x84aea4a7aad5c5899bd5cfc7f309cc379009d30179316a2a7baa4a2ea4a438ac',
 'sha3Uncles': '0x1dcc4de8dec75d7aab85b567b6ccd41ad312451b948a7413f0a142fd40d49347',
 'size': 650,
 'stateRoot': '0x96dbad955b166f5119793815c36f11ffa909859bbfeb64b735cca37cbf10bef1',
 'timestamp': 1470173578,
 'totalDifficulty': 44010101827705409388,
 'transactions': ['0xc55e2b90168af6972193c1f86fa4d7d7b31a29c156665d15b9cd48618b5177ef'],
 'transactionsRoot': '0xb31f174d27b99cdae8e746bd138a01ce60d8dd7b224f7c60845914def05ecc58',
 'uncles': [],
})

	
Eth.getBlockTransactionCount(block_identifier)

	
	Delegates to eth_getBlockTransactionCountByNumber or
eth_getBlockTransactionCountByHash RPC Methods

Returns the number of transactions in the block specified by
block_identifier. Delegates to
eth_getBlockTransactionCountByNumber if block_identifier is an
integer or one of the predefined block parameters 'latest', 'earliest',
'pending', otherwise delegates to eth_getBlockTransactionCountByHash.

>>> web3.eth.getBlockTransactionCount(46147)
1
>>> web3.eth.getBlockTransactionCount('0x4e3a3754410177e6937ef1f84bba68ea139e8d1a2258c5f85db9f1cd715a1bdd') # block 46147
1

	
Eth.getUncle(block_identifier)

	
Note

Method to get an Uncle from its hash is not available through
RPC, a possible substitute is the method Eth.getUncleByBlock

	
Eth.getUncleByBlock(block_identifier, uncle_index)

	
	Delegates to eth_getUncleByBlockHashAndIndex or
eth_getUncleByBlockNumberAndIndex RPC methods

Returns the uncle at the index specified by uncle_index
from the block specified by block_identifier. Delegates to
eth_getUncleByBlockNumberAndIndex if block_identifier is an
integer or one of the predefined block parameters 'latest', 'earliest',
'pending', otherwise delegates to
eth_getUncleByBlockHashAndIndex.

>>> web3.eth.getUncleByBlock(56160, 0)
AttributeDict({
 'author': '0xbe4532e1b1db5c913cf553be76180c1777055403',
 'difficulty': '0x17dd9ca0afe',
 'extraData': '0x476574682f686261722f76312e302e312f6c696e75782f676f312e342e32',
 'gasLimit': '0x2fefd8',
 'gasUsed': '0x0',
 'hash': '0xc78c35720d930f9ef34b4e6fb9d02ffec936f9b02a8f0fa858456e4afd4d5614',
 'logsBloom':'0x00,
 'miner': '0xbe4532e1b1db5c913cf553be76180c1777055403',
 'mixHash': '0x041e14603f35a82f6023802fec96ef760433292434a39787514f140950597e5e',
 'nonce': '0x5d2b7e3f1af09995',
 'number': '0xdb5e',
 'parentHash': '0xcc30e8a9b15c548d5bf113c834143a8f0e1909fbfea96b2a208dc154293a78cf',
 'receiptsRoot': '0x56e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421',
 'sealFields': ['0xa0041e14603f35a82f6023802fec96ef760433292434a39787514f140950597e5e', '0x885d2b7e3f1af09995'],
 'sha3Uncles': '0x1dcc4de8dec75d7aab85b567b6ccd41ad312451b948a7413f0a142fd40d49347',
 'size': None, 'stateRoot': '0x8ce2b1bf8e25a06a8ca34c647ff5fd0fa48ac725cc07f657ae1645ab8ef68c91',
 'timestamp': '0x55c6a972',
 'totalDifficulty': '0xce4c4f0a0b810b',
 'transactions': [],
 'transactionsRoot': '0x56e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421',
 'uncles': []
})

You can also refer to the block by hash:
>>> web3.eth.getUncleByBlock('0x685b2226cbf6e1f890211010aa192bf16f0a0cba9534264a033b023d7367b845', 0)
AttributeDict({
 ...
})

	
Eth.getTransaction(transaction_hash)

	
	Delegates to eth_getTransactionByHAsh RPC Method

Returns the transaction specified by transaction_hash

>>> web3.eth.getTransaction('0x5c504ed432cb51138bcf09aa5e8a410dd4a1e204ef84bfed1be16dfba1b22060')
AttributeDict({
 'blockHash': '0x4e3a3754410177e6937ef1f84bba68ea139e8d1a2258c5f85db9f1cd715a1bdd',
 'blockNumber': 46147,
 'from': '0xa1e4380a3b1f749673e270229993ee55f35663b4',
 'gas': 21000,
 'gasPrice': 50000000000000,
 'hash': '0x5c504ed432cb51138bcf09aa5e8a410dd4a1e204ef84bfed1be16dfba1b22060',
 'input': '0x',
 'nonce': 0,
 'to': '0x5df9b87991262f6ba471f09758cde1c0fc1de734',
 'transactionIndex': 0,
 'value': 31337,
})

	
Eth.getTransactionFromBlock(block_identifier, transaction_index)

	
Note

This method is deprecated and replaced by
Eth.getTransactionByBlock

	
Eth.getTransactionByBlock(block_identifier, transaction_index)

	
	Delegates to eth_getTransactionByBlockNumberAndIndex or
eth_getTransactionByBlockHashAndIndex RPC Methods

Returns the transaction at the index specified by transaction_index
from the block specified by block_identifier. Delegates to
eth_getTransactionByBlockNumberAndIndex if block_identifier is an
integer or one of the predefined block parameters 'latest', 'earliest',
'pending', otherwise delegates to
eth_getTransactionByBlockHashAndIndex.

>>> web3.eth.getTransactionFromBlock(46147, 0)
AttributeDict({
 'blockHash': '0x4e3a3754410177e6937ef1f84bba68ea139e8d1a2258c5f85db9f1cd715a1bdd',
 'blockNumber': 46147,
 'from': '0xa1e4380a3b1f749673e270229993ee55f35663b4',
 'gas': 21000,
 'gasPrice': 50000000000000,
 'hash': '0x5c504ed432cb51138bcf09aa5e8a410dd4a1e204ef84bfed1be16dfba1b22060',
 'input': '0x',
 'nonce': 0,
 'to': '0x5df9b87991262f6ba471f09758cde1c0fc1de734',
 'transactionIndex': 0,
 'value': 31337,
})
>>> web3.eth.getTransactionFromBlock('0x4e3a3754410177e6937ef1f84bba68ea139e8d1a2258c5f85db9f1cd715a1bdd', 0)
AttributeDict({
 'blockHash': '0x4e3a3754410177e6937ef1f84bba68ea139e8d1a2258c5f85db9f1cd715a1bdd',
 'blockNumber': 46147,
 'from': '0xa1e4380a3b1f749673e270229993ee55f35663b4',
 'gas': 21000,
 'gasPrice': 50000000000000,
 'hash': '0x5c504ed432cb51138bcf09aa5e8a410dd4a1e204ef84bfed1be16dfba1b22060',
 'input': '0x',
 'nonce': 0,
 'to': '0x5df9b87991262f6ba471f09758cde1c0fc1de734',
 'transactionIndex': 0,
 'value': 31337,
})

	
Eth.waitForTransactionReceipt(transaction_hash, timeout=120)

	Waits for the transaction specified by transaction_hash to be included in a block, then
returns its transaction receipt.

Optionally, specify a timeout in seconds. If timeout elapses before the transaction
is added to a block, then waitForTransactionReceipt() raises a Timeout exception.

>>> web3.eth.waitForTransactionReceipt('0x5c504ed432cb51138bcf09aa5e8a410dd4a1e204ef84bfed1be16dfba1b22060')
If transaction is not yet in a block, time passes, while the thread sleeps...
...
Then when the transaction is added to a block, its receipt is returned:
AttributeDict({
 'blockHash': '0x4e3a3754410177e6937ef1f84bba68ea139e8d1a2258c5f85db9f1cd715a1bdd',
 'blockNumber': 46147,
 'contractAddress': None,
 'cumulativeGasUsed': 21000,
 'from': '0xa1e4380a3b1f749673e270229993ee55f35663b4',
 'gasUsed': 21000,
 'logs': [],
 'root': '96a8e009d2b88b1483e6941e6812e32263b05683fac202abc622a3e31aed1957',
 'to': '0x5df9b87991262f6ba471f09758cde1c0fc1de734',
 'transactionHash': '0x5c504ed432cb51138bcf09aa5e8a410dd4a1e204ef84bfed1be16dfba1b22060',
 'transactionIndex': 0,
})

	
Eth.getTransactionReceipt(transaction_hash)

	
	Delegates to eth_getTransactionReceipt RPC Method

Returns the transaction receipt specified by transaction_hash. If the transaction has not yet been mined returns None

>>> web3.eth.getTransactionReceipt('0x5c504ed432cb51138bcf09aa5e8a410dd4a1e204ef84bfed1be16dfba1b22060') # not yet mined
None
wait for it to be mined....
>>> web3.eth.getTransactionReceipt('0x5c504ed432cb51138bcf09aa5e8a410dd4a1e204ef84bfed1be16dfba1b22060')
AttributeDict({
 'blockHash': '0x4e3a3754410177e6937ef1f84bba68ea139e8d1a2258c5f85db9f1cd715a1bdd',
 'blockNumber': 46147,
 'contractAddress': None,
 'cumulativeGasUsed': 21000,
 'from': '0xa1e4380a3b1f749673e270229993ee55f35663b4',
 'gasUsed': 21000,
 'logs': [],
 'root': '96a8e009d2b88b1483e6941e6812e32263b05683fac202abc622a3e31aed1957',
 'to': '0x5df9b87991262f6ba471f09758cde1c0fc1de734',
 'transactionHash': '0x5c504ed432cb51138bcf09aa5e8a410dd4a1e204ef84bfed1be16dfba1b22060',
 'transactionIndex': 0,
})

	
Eth.getTransactionCount(account, block_identifier=web3.eth.defaultBlock)

	
	Delegates to eth_getTransactionCount RPC Method

Returns the number of transactions that have been sent from account as
of the block specified by block_identifier.

account may be a hex address or an ENS name

>>> web3.eth.getTransactionCount('0xd3cda913deb6f67967b99d67acdfa1712c293601')
340

	
Eth.sendTransaction(transaction)

	
	Delegates to eth_sendTransaction RPC Method

Signs and sends the given transaction

The transaction parameter should be a dictionary with the following fields.

	from: bytes or text, hex address or ENS name - (optional, default:
web3.eth.defaultAccount) The address the transaction is send from.

	to: bytes or text, hex address or ENS name - (optional when creating new
contract) The address the transaction is directed to.

	gas: integer - (optional, default: 90000) Integer of the gas
provided for the transaction execution. It will return unused gas.

	gasPrice: integer - (optional, default: To-Be-Determined) Integer
of the gasPrice used for each paid gas

	value: integer - (optional) Integer of the value send with this
transaction

	data: bytes or text - The compiled code of a contract OR the hash
of the invoked method signature and encoded parameters. For details see
Ethereum Contract ABI [https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI].

	nonce: integer - (optional) Integer of a nonce. This allows to
overwrite your own pending transactions that use the same nonce.

If the transaction specifies a data value but does not specify
gas then the gas value will be populated using the
estimateGas() function with an additional buffer of 100000
gas up to the gasLimit of the latest block. In the event that the
value returned by estimateGas() method is greater than the
gasLimit a ValueError will be raised.

>>> web3.eth.sendTransaction({'to': '0xd3cda913deb6f67967b99d67acdfa1712c293601', 'from': web3.eth.coinbase, 'value': 12345})
'0xe670ec64341771606e55d6b4ca35a1a6b75ee3d5145a99d05921026d1527331'

	
Eth.sendRawTransaction(raw_transaction)

	
	Delegates to eth_sendRawTransaction RPC Method

Sends a signed and serialized transaction. Returns the transaction hash.

>>> signed_txn = w3.eth.account.signTransaction(dict(
 nonce=w3.eth.getTransactionCount(w3.eth.coinbase),
 gasPrice=w3.eth.gasPrice,
 gas=100000,
 to='0xd3cda913deb6f67967b99d67acdfa1712c293601',
 value=12345,
 data=b'',
),
 private_key_for_senders_account,
)
>>> w3.eth.sendRawTransaction(signed_txn.rawTransaction)
'0xe670ec64341771606e55d6b4ca35a1a6b75ee3d5145a99d05921026d1527331'

	
Eth.replaceTransaction(transaction_hash, new_transaction)

	
	Delegates to eth_sendTransaction RPC Method

Sends a transaction that replaces the transaction with transaction_hash.

The transaction_hash must be the hash of a pending transaction.

The new_transaction parameter should be a dictionary with transaction fields
as required by sendTransaction(). It will be used to entirely
replace the transaction of transaction_hash without using any of the pending
transaction’s values.

If the new_transaction specifies a nonce value, it must match the pending
transaction’s nonce.

If the new_transaction specifies a gasPrice value, it must be greater than
the pending transaction’s gasPrice.

If the new_transaction does not specify a gasPrice value, the highest of the
following 2 values will be used:

	The pending transaction’s gasPrice * 1.1 - This is typically the minimum
gasPrice increase a node requires before it accepts a replacement transaction.

	The gasPrice as calculated by the current gas price strategy(See Gas Price API).

This method returns the transaction hash of the replacement transaction.

>>> tx = web3.eth.sendTransaction({
 'to': '0xd3cda913deb6f67967b99d67acdfa1712c293601',
 'from': web3.eth.coinbase,
 'value': 1000
 })
'0xe670ec64341771606e55d6b4ca35a1a6b75ee3d5145a99d05921026d1527331'
>>> web3.eth.replaceTransaction('0xe670ec64341771606e55d6b4ca35a1a6b75ee3d5145a99d05921026d1527331', {
 'to': '0xd3cda913deb6f67967b99d67acdfa1712c293601',
 'from': web3.eth.coinbase,
 'value': 2000
 })

	
Eth.modifyTransaction(transaction_hash, **transaction_params)

	
	Delegates to eth_sendTransaction RPC Method

Sends a transaction that modifies the transaction with transaction_hash.

transaction_params are keyword arguments that correspond to valid transaction
parameters as required by sendTransaction(). The parameter values
will override the pending transaction’s values to create the replacement transaction
to send.

The same validation and defaulting rules of replaceTransaction() apply.

This method returns the transaction hash of the newly modified transaction.

>>> tx = web3.eth.sendTransaction({
 'to': '0xd3cda913deb6f67967b99d67acdfa1712c293601',
 'from': web3.eth.coinbase,
 'value': 1000
 })
'0xe670ec64341771606e55d6b4ca35a1a6b75ee3d5145a99d05921026d1527331'
>>> web3.eth.modifyTransaction('0xe670ec64341771606e55d6b4ca35a1a6b75ee3d5145a99d05921026d1527331', value=2000)

	
Eth.sign(account, data=None, hexstr=None, text=None)

	
	Delegates to eth_sign RPC Method

Caller must specify exactly one of: data, hexstr, or text.

Signs the given data with the private key of the given account.
The account must be unlocked.

account may be a hex address or an ENS name

>>> web3.eth.sign(
 '0xd3cda913deb6f67967b99d67acdfa1712c293601',
 text='some-text-tö-sign')
'0x1a8bbe6eab8c72a219385681efefe565afd3accee35f516f8edf5ae82208fbd45a58f9f9116d8d88ba40fcd29076d6eada7027a3b412a9db55a0164547810cc401'

>>> web3.eth.sign(
 '0xd3cda913deb6f67967b99d67acdfa1712c293601',
 data=b'some-text-t\xc3\xb6-sign')
'0x1a8bbe6eab8c72a219385681efefe565afd3accee35f516f8edf5ae82208fbd45a58f9f9116d8d88ba40fcd29076d6eada7027a3b412a9db55a0164547810cc401'

>>> web3.eth.sign(
 '0xd3cda913deb6f67967b99d67acdfa1712c293601',
 hexstr='0x736f6d652d746578742d74c3b62d7369676e')
'0x1a8bbe6eab8c72a219385681efefe565afd3accee35f516f8edf5ae82208fbd45a58f9f9116d8d88ba40fcd29076d6eada7027a3b412a9db55a0164547810cc401'

	
Eth.call(transaction, block_identifier=web3.eth.defaultBlock)

	
	Delegates to eth_call RPC Method

Executes the given transaction locally without creating a new transaction
on the blockchain. Returns the return value of the executed contract.

The transaction parameter is handled in the same manner as the
sendTransaction() method.

>>> myContract.functions.setVar(1).transact()
HexBytes('0x79af0c7688afba7588c32a61565fd488c422da7b5773f95b242ea66d3d20afda')
>>> myContract.functions.getVar().call()
1
The above call equivalent to the raw call:
>>> we3.eth.call({'value': 0, 'gas': 21736, 'gasPrice': 1, 'to': '0xc305c901078781C232A2a521C2aF7980f8385ee9', 'data': '0x477a5c98'})
HexBytes('0x0001')

In most cases it is better to make contract function call through the web3.contract.Contract interface.

	
Eth.estimateGas(transaction)

	
	Delegates to eth_estimateGas RPC Method

Executes the given transaction locally without creating a new transaction
on the blockchain. Returns amount of gas consumed by execution which can
be used as a gas estimate.

The transaction parameter is handled in the same manner as the
sendTransaction() method.

>>> web3.eth.estimateGas({'to': '0xd3cda913deb6f67967b99d67acdfa1712c293601', 'from': web3.eth.coinbase, 'value': 12345})
21000

	
Eth.generateGasPrice(transaction_params=None)

	Uses the selected gas price strategy to calculate a gas price. This method
returns the gas price denominated in wei.

The transaction_params argument is optional however some gas price strategies
may require it to be able to produce a gas price.

>>> Web3.eth.generateGasPrice()
20000000000

Note

For information about how gas price can be customized in web3 see
Gas Price API.

	
Eth.setGasPriceStrategy(gas_price_strategy)

	Set the selected gas price strategy. It must be a method of the signature
(web3, transaction_params) and return a gas price denominated in wei.

Filters

The following methods are available on the web3.eth object for interacting
with the filtering API.

	
Eth.filter(filter_params)

	
	Delegates to eth_newFilter, eth_newBlockFilter, and
eth_newPendingTransactionFilter RPC Methods.

This method delegates to one of three RPC methods depending on the value of
filter_params.

	If filter_params is the string 'pending' then a new filter is
registered using the eth_newPendingTransactionFilter RPC method.
This will create a new filter that will be called for each new unmined
transaction that the node receives.

	If filter_params is the string 'latest' then a new filter is
registered using the eth_newBlockFilter RPC method. This will create
a new filter that will be called each time the node receives a new block.

	If filter_params is a dictionary then a new filter is registered
using the eth_newFilter RPC method. This will create a new filter
that will be called for all log entries that match the provided
filter_params.

This method returns a web3.utils.filters.Filter object which can then
be used to either directly fetch the results of the filter or to register
callbacks which will be called with each result of the filter.

When creating a new log filter, the filter_params should be a
dictionary with the following keys.

	fromBlock: integer/tag - (optional, default: “latest”) Integer
block number, or “latest” for the last mined block or “pending”,
“earliest” for not yet mined transactions.

	toBlock: integer/tag - (optional, default: “latest”) Integer
block number, or “latest” for the last mined block or “pending”,
“earliest” for not yet mined transactions.

	address: string or list of strings, each 20 Bytes -
(optional) Contract address or a list of addresses from which logs should
originate.

	topics: list of 32 byte strings or null - (optional) Array of
topics that should be used for filtering. Topics are order-dependent.
This parameter can also be a list of topic lists in which case filtering
will match any of the provided topic arrays.

See Filtering for more information about filtering.

>>> web3.eth.filter('latest')
<BlockFilter at 0x10b72dc28>
>>> web3.eth.filter('pending')
<TransactionFilter at 0x10b780340>
>>> web3.eth.filter({'fromBlock': 1000000, 'toBlock': 1000100, 'address': '0x6c8f2a135f6ed072de4503bd7c4999a1a17f824b'})
<LogFilter at 0x10b7803d8>

	
Eth.getFilterChanges(self, filter_id)

	
	Delegates to eth_getFilterChanges RPC Method.

Returns all new entries which occurred since the last call to this method
for the given filter_id

>>> filt = web3.eth.filter()
>>> web3.eth.getFilterChanges(filt.filter_id)
[
 {
 'address': '0xdc3a9db694bcdd55ebae4a89b22ac6d12b3f0c24',
 'blockHash': '0xb72256286ca528e09022ffd408856a73ef90e7216ac560187c6e43b4c4efd2f0',
 'blockNumber': 2217196,
 'data': '0x0001',
 'logIndex': 0,
 'topics': ['0xe65b00b698ba37c614af350761c735c5f4a82b4ab365a1f1022d49d9dfc8e930',
 '0x000000000000000000000000754c50465885f1ed1fa1a55b95ee8ecf3f1f4324',
 '0x296c7fb6ccafa3e689950b947c2895b07357c95b066d5cdccd58c301f41359a3'],
 'transactionHash': '0xfe1289fd3915794b99702202f65eea2e424b2f083a12749d29b4dd51f6dce40d',
 'transactionIndex': 1,
 },
 ...
]

	
Eth.getFilterLogs(self, filter_id)

	
	Delegates to eth_getFilterLogs RPC Method.

Returns all entries for the given filter_id

>>> filt = web3.eth.filter()
>>> web3.eth.getFilterLogs(filt.filter_id)
[
 {
 'address': '0xdc3a9db694bcdd55ebae4a89b22ac6d12b3f0c24',
 'blockHash': '0xb72256286ca528e09022ffd408856a73ef90e7216ac560187c6e43b4c4efd2f0',
 'blockNumber': 2217196,
 'data': '0x0001',
 'logIndex': 0,
 'topics': ['0xe65b00b698ba37c614af350761c735c5f4a82b4ab365a1f1022d49d9dfc8e930',
 '0x000000000000000000000000754c50465885f1ed1fa1a55b95ee8ecf3f1f4324',
 '0x296c7fb6ccafa3e689950b947c2895b07357c95b066d5cdccd58c301f41359a3'],
 'transactionHash': '0xfe1289fd3915794b99702202f65eea2e424b2f083a12749d29b4dd51f6dce40d',
 'transactionIndex': 1,
 },
 ...
]

	
Eth.uninstallFilter(self, filter_id)

	
	Delegates to eth_uninstallFilter RPC Method.

Uninstalls the filter specified by the given filter_id. Returns
boolean as to whether the filter was successfully uninstalled.

>>> filt = web3.eth.filter()
>>> web3.eth.uninstallFilter(filt.filter_id)
True
>>> web3.eth.uninstallFilter(filt.filter_id)
False # already uninstalled.

	
Eth.getLogs(filter_params)

	This is the equivalent of: creating a new
filter, running getFilterLogs(), and then uninstalling the filter. See
filter() for details on allowed filter parameters.

Contracts

	
Eth.contract(address=None, contract_name=None, ContractFactoryClass=Contract, **contract_factory_kwargs)

	If address is provided, then this method will return an instance of the
contract defined by abi. The address may be a hex string,
or an ENS name like 'mycontract.eth'.

from web3 import Web3

w3 = Web3(...)

contract = w3.eth.contract(address='0x000000000000000000000000000000000000dead', abi=...)

alternatively:
contract = w3.eth.contract(address='mycontract.eth', abi=...)

Note

If you use an ENS name to initialize a contract, the contract will be looked up by
name on each use. If the name could ever change maliciously, first
Look up the address for an ENS name, and then create the contract with the hex address.

If address is not provided, the newly created contract class will be returned. That
class will then be initialized by supplying the address.

from web3 import Web3

w3 = Web3(...)

Contract = w3.eth.contract(abi=...)

later, initialize contracts with the same metadata at different addresses:
contract1 = Contract(address='0x000000000000000000000000000000000000dead')
contract2 = Contract(address='mycontract.eth')

contract_name will be used as the name of the contract class. If it is
None then the name of the ContractFactoryClass will be used.

ContractFactoryClass will be used as the base Contract class.

The following arguments are accepted for contract class creation.

	abi

	asm

	ast

	bytecode

	bytecode_runtime

	clone_bin

	dev_doc

	interface

	metadata

	opcodes

	src_map

	src_map_runtime

	user_doc

See Contracts for more information about how to use contracts.

	
Eth.setContractFactory(contractFactoryClass)

	Modify the default contract factory from Contract to contractFactoryClass.
Future calls to Eth.contract() will then default to contractFactoryClass.

An example of an alternative Contract Factory is ConciseContract.

Working with Local Private Keys

Local vs Hosted Nodes

	Local Node

	A local node is started and controlled by you. It is as safe as you keep it.
When you run geth or parity on your machine, you are running a local node.

	Hosted Node

	A hosted node is controlled by someone else. When you connect to Infura, you are
connected to a hosted node.

Local vs Hosted Keys

	Local Private Key

	A key is 32 bytes [https://docs.python.org/3.5/library/functions.html#bytes] of data that you can use to sign transactions and messages,
before sending them to your node.
You must use sendRawTransaction()
when working with local keys, instead of
sendTransaction() .

	Hosted Private Key

	This is a common way to use accounts with local nodes.
Each account returned by w3.eth.accounts
has a hosted private key stored in your node.
This allows you to use sendTransaction().

Warning

It is unnacceptable for a hosted node to offer hosted private keys. It
gives other people complete control over your account. “Not your keys,
not your Ether” in the wise words of Andreas Antonopoulos.

Some Common Uses for Local Private Keys

A very common reason to work with local private keys is to interact
with a hosted node.

Some common things you might want to do with a Local Private Key are:

	Sign a Transaction

	Sign a Contract Transaction

	Sign a Message

	Verify a Message

Using private keys usually involves w3.eth.account in one way or another. Read on for more,
or see a full list of things you can do in the docs for
eth_account.Account [https://eth-account.readthedocs.io/en/latest/eth_account.html#eth_account.account.Account].

Extract private key from geth keyfile

Note

The amount of available ram should be greater than 1GB.

with open('~/.ethereum/keystore/UTC--...--5ce9454909639D2D17A3F753ce7d93fa0b9aB12E') as keyfile:
 encrypted_key = keyfile.read()
 private_key = w3.eth.account.decrypt(encrypted_key, 'correcthorsebatterystaple')
 # tip: do not save the key or password anywhere, especially into a shared source file

Sign a Message

Warning

There is no single message format that is broadly adopted
with community consensus. Keep an eye on several options,
like EIP-683 [https://github.com/ethereum/EIPs/pull/683],
EIP-712 [https://github.com/ethereum/EIPs/pull/712], and
EIP-719 [https://github.com/ethereum/EIPs/pull/719]. Consider
the w3.eth.sign() approach be deprecated.

For this example, we will use the same message hashing mechanism that
is provided by w3.eth.sign().

>>> from web3.auto import w3
>>> from eth_account.messages import defunct_hash_message

>>> msg = "I♥SF"
>>> private_key = b"\xb2\\}\xb3\x1f\xee\xd9\x12''\xbf\t9\xdcv\x9a\x96VK-\xe4\xc4rm\x03[6\xec\xf1\xe5\xb3d"
>>> message_hash = defunct_hash_message(text=msg)
>>> signed_message = w3.eth.account.signHash(message_hash, private_key=private_key)
>>> signed_message
AttrDict({'messageHash': HexBytes('0x1476abb745d423bf09273f1afd887d951181d25adc66c4834a70491911b7f750'),
 'r': 104389933075820307925104709181714897380569894203213074526835978196648170704563,
 's': 28205917190874851400050446352651915501321657673772411533993420917949420456142,
 'v': 28,
 'signature': HexBytes('0xe6ca9bba58c88611fad66a6ce8f996908195593807c4b38bd528d2cff09d4eb33e5bfbbf4d3e39b1a2fd816a7680c19ebebaf3a141b239934ad43cb33fcec8ce1c')})

Verify a Message

With the original message text and a signature:

>>> message_hash = defunct_hash_message(text="I♥SF")
>>> w3.eth.account.recoverHash(message_hash, signature=signed_message.signature)
'0x5ce9454909639D2D17A3F753ce7d93fa0b9aB12E'

Verify a Message from message hash

Sometimes you don’t have the original message, all you have is the
prefixed & hashed message. To verify it, use:

>>> message_hash = '0x1476abb745d423bf09273f1afd887d951181d25adc66c4834a70491911b7f750'
>>> signature = '0xe6ca9bba58c88611fad66a6ce8f996908195593807c4b38bd528d2cff09d4eb33e5bfbbf4d3e39b1a2fd816a7680c19ebebaf3a141b239934ad43cb33fcec8ce1c'
>>> w3.eth.account.recoverHash(message_hash, signature=signature)
'0x5ce9454909639D2D17A3F753ce7d93fa0b9aB12E'

Prepare message for ecrecover in Solidity

Let’s say you want a contract to validate a signed message,
like if you’re making payment channels, and you want to
validate the value in Remix or web3.js.

You might have produced the signed_message locally, as in
Sign a Message. If so, this will prepare it for Solidity:

>>> from web3 import Web3

ecrecover in Solidity expects v as a native uint8, but r and s as left-padded bytes32
Remix / web3.js expect r and s to be encoded to hex
This convenience method will do the pad & hex for us:
>>> def to_32byte_hex(val):
... return Web3.toHex(Web3.toBytes(val).rjust(32, b'\0'))

>>> ec_recover_args = (msghash, v, r, s) = (
... Web3.toHex(signed_message.messageHash),
... signed_message.v,
... to_32byte_hex(signed_message.r),
... to_32byte_hex(signed_message.s),
...)
>>> ec_recover_args
('0x1476abb745d423bf09273f1afd887d951181d25adc66c4834a70491911b7f750',
 28,
 '0xe6ca9bba58c88611fad66a6ce8f996908195593807c4b38bd528d2cff09d4eb3',
 '0x3e5bfbbf4d3e39b1a2fd816a7680c19ebebaf3a141b239934ad43cb33fcec8ce')

Instead, you might have received a message and a signature encoded to hex. Then
this will prepare it for Solidity:

>>> from web3 import Web3
>>> from eth_account.messages import defunct_hash_message

>>> hex_message = '0x49e299a55346'
>>> hex_signature = '0xe6ca9bba58c88611fad66a6ce8f996908195593807c4b38bd528d2cff09d4eb33e5bfbbf4d3e39b1a2fd816a7680c19ebebaf3a141b239934ad43cb33fcec8ce1c'

ecrecover in Solidity expects a prefixed & hashed version of the message
>>> message_hash = defunct_hash_message(hexstr=hex_message)

Remix / web3.js expect the message hash to be encoded to a hex string
>>> hex_message_hash = Web3.toHex(message_hash)

ecrecover in Solidity expects the signature to be split into v as a uint8,
and r, s as a bytes32
Remix / web3.js expect r and s to be encoded to hex
>>> sig = Web3.toBytes(hexstr=hex_signature)
>>> v, hex_r, hex_s = Web3.toInt(sig[-1]), Web3.toHex(sig[:32]), Web3.toHex(sig[32:64])

ecrecover in Solidity takes the arguments in order = (msghash, v, r, s)
>>> ec_recover_args = (hex_message_hash, v, hex_r, hex_s)
>>> ec_recover_args
('0x1476abb745d423bf09273f1afd887d951181d25adc66c4834a70491911b7f750',
 28,
 '0xe6ca9bba58c88611fad66a6ce8f996908195593807c4b38bd528d2cff09d4eb3',
 '0x3e5bfbbf4d3e39b1a2fd816a7680c19ebebaf3a141b239934ad43cb33fcec8ce')

Verify a message with ecrecover in Solidity

Create a simple ecrecover contract in Remix [https://remix.ethereum.org/]:

pragma solidity ^0.4.19;

contract Recover {
 function ecr (bytes32 msgh, uint8 v, bytes32 r, bytes32 s) public pure
 returns (address sender) {
 return ecrecover(msgh, v, r, s);
 }
}

Then call ecr with these arguments from Prepare message for ecrecover in Solidity in Remix,
"0x1476abb745d423bf09273f1afd887d951181d25adc66c4834a70491911b7f750", 28, "0xe6ca9bba58c88611fad66a6ce8f996908195593807c4b38bd528d2cff09d4eb3", "0x3e5bfbbf4d3e39b1a2fd816a7680c19ebebaf3a141b239934ad43cb33fcec8ce"

The message is verified, because we get the correct sender of
the message back in response: 0x5ce9454909639d2d17a3f753ce7d93fa0b9ab12e.

Sign a Transaction

Create a transaction, sign it locally, and then send it to your node for broadcasting,
with sendRawTransaction().

>>> transaction = {
... 'to': '0xF0109fC8DF283027b6285cc889F5aA624EaC1F55',
... 'value': 1000000000,
... 'gas': 2000000,
... 'gasPrice': 234567897654321,
... 'nonce': 0,
... 'chainId': 1
... }
>>> key = '0x4c0883a69102937d6231471b5dbb6204fe5129617082792ae468d01a3f362318'
>>> signed = w3.eth.account.signTransaction(transaction, key)
>>> signed.rawTransaction
HexBytes('0xf86a8086d55698372431831e848094f0109fc8df283027b6285cc889f5aa624eac1f55843b9aca008025a009ebb6ca057a0535d6186462bc0b465b561c94a295bdb0621fc19208ab149a9ca0440ffd775ce91a833ab410777204d5341a6f9fa91216a6f3ee2c051fea6a0428')
>>> signed.hash
HexBytes('0xd8f64a42b57be0d565f385378db2f6bf324ce14a594afc05de90436e9ce01f60')
>>> signed.r
4487286261793418179817841024889747115779324305375823110249149479905075174044
>>> signed.s
30785525769477805655994251009256770582792548537338581640010273753578382951464
>>> signed.v
37

When you run sendRawTransaction, you get back the hash of the transaction:
>>> w3.eth.sendRawTransaction(signed.rawTransaction)
'0xd8f64a42b57be0d565f385378db2f6bf324ce14a594afc05de90436e9ce01f60'

Sign a Contract Transaction

To sign a transaction locally that will invoke a smart contract:

	Initialize your Contract object

	Build the transaction

	Sign the transaction, with w3.eth.account.signTransaction()

	Broadcast the transaction with sendRawTransaction()

>>> from ethtoken.abi import EIP20_ABI
>>> from web3.auto import w3

>>> unicorns = w3.eth.contract(address="0xfB6916095ca1df60bB79Ce92cE3Ea74c37c5d359", abi=EIP20_ABI)

>>> nonce = w3.eth.getTransactionCount('0x5ce9454909639D2D17A3F753ce7d93fa0b9aB12E')

Build a transaction that invokes this contract's function, called transfer
>>> unicorn_txn = unicorns.functions.transfer(
... '0xfB6916095ca1df60bB79Ce92cE3Ea74c37c5d359',
... 1,
...).buildTransaction({
... 'chainId': 1,
... 'gas': 70000,
... 'gasPrice': w3.toWei('1', 'gwei'),
... 'nonce': nonce,
... })

>>> unicorn_txn
{'value': 0,
 'chainId': 1,
 'gas': 70000,
 'gasPrice': 1000000000,
 'nonce': 0,
 'to': '0xfB6916095ca1df60bB79Ce92cE3Ea74c37c5d359',
 'data': '0xa9059cbb000000000000000000000000fb6916095ca1df60bb79ce92ce3ea74c37c5d3590001'}

>>> private_key = b"\xb2\\}\xb3\x1f\xee\xd9\x12''\xbf\t9\xdcv\x9a\x96VK-\xe4\xc4rm\x03[6\xec\xf1\xe5\xb3d"
>>> signed_txn = w3.eth.account.signTransaction(unicorn_txn, private_key=private_key)
>>> signed_txn.hash
HexBytes('0x4795adc6a719fa64fa21822630c0218c04996e2689ded114b6553cef1ae36618')
>>> signed_txn.rawTransaction
HexBytes('0xf8a980843b9aca008301117094fb6916095ca1df60bb79ce92ce3ea74c37c5d35980b844a9059cbb000000000000000000000000fb6916095ca1df60bb79ce92ce3ea74c37c5d359000125a00fb532eea06b8f17d858d82ad61986efd0647124406be65d359e96cac3e004f0a02e5d7ffcfb7a6073a723be38e6733f353cf9367743ae94e2ccd6f1eba37116f4')
>>> signed_txn.r
7104843568152743554992057394334744036860247658813231830421570918634460546288
>>> signed_txn.s
20971591154030974221209741174186570949918731455961098911091818811306894497524
>>> signed_txn.v
37

>>> w3.eth.sendRawTransaction(signed_txn.rawTransaction)

When you run sendRawTransaction, you get the same result as the hash of the transaction:
>>> w3.toHex(w3.sha3(signed_txn.rawTransaction))
'0x4795adc6a719fa64fa21822630c0218c04996e2689ded114b6553cef1ae36618'

Package Manager API

	
class web3.pm.PM

	

The web3.pm object exposes methods to interact with Packages as defined by ERC 1123 [https://github.com/ethereum/EIPs/issues/1123].

Installation

Warning

The PM module is still under development, and not all use-cases are currently supported, so it is not included by default in the web3 instance.

You must install the eth-pm module separately, until it is stable. Install with:

pip install --upgrade ethpm

Attaching

To use web3.pm, attach it to your web3 instance.

from web3.pm import PM
PM.attach(web3, 'pm')

Methods

The follwing methods are available on the web3.pm namespace.

	
PM.get_package_from_manifest(self, manifest)

	
	Manifest must currently be a dict representing a valid manifest

	Returns a Package instance representing the Manifest

SHH API

	
class web3.shh.Shh

	

The web3.shh object exposes methods to interact with the RPC APIs under the
shh_ namespace.

Warning

The Whisper protocol is in flux, with incompatible versions supported
by different major clients. So it is not currently included by default in the web3
instance.

Properties

The following properties are available on the web.shh namespace.

	
Shh.version

	Returns the Whisper version this node offers.

>>>web3.shh.version
6.0

	
Shh.info

	Returns the Whisper statistics for diagnostics.

>>>web3.shh.info
{'maxMessageSize': 1024, 'memory': 240, 'messages': 0, 'minPow': 0.2}

Methods

The following methods are available on the web3.shh namespace.

	
Shh.post(self, message)

	
	Creates a whisper message and injects it into the network for distribution.

	
	Parameters:

	
	symKeyID: When using symmetric key encryption, holds the symmetric key ID.

	pubKey: When using asymmetric key encryption, holds the public key.

	ttl: Time-to-live in seconds.

	sig (optional): ID of the signing key.

	topic: Message topic (four bytes of arbitrary data).

	payload: Payload to be encrypted.

	padding (optional): Padding (byte array of arbitrary length).

	powTime: Maximal time in seconds to be spent on prrof of work.

	powTarget: Minimal PoW target required for this message.

	targetPeer (optional): Peer ID (for peer-to-peer message only).

	Returns True if the message was succesfully sent, otherwise False

>>>web3.shh.post({'payload': web3.toHex(text="test_payload"), 'pubKey': recipient_public, 'topic': '0x12340000', 'powTarget': 2.5, 'powTime': 2})
True

	
Shh.newMessageFilter(self, criteria, poll_interval=None)

	
	Create a new filter within the node. This filter can be used to poll for new messages that match the set of criteria.

	If a poll_interval is specified, the client will asynchronously poll for new messages.

	
	Parameters:

	
	symKeyID: When using symmetric key encryption, holds the symmetric key ID.

	privateKeyID: When using asymmetric key encryption, holds the private key ID.

	sig: Public key of the signature.

	minPoW: Minimal PoW requirement for incoming messages.

	topics: Array of possible topics (or partial topics).

	allowP2P: Indicates if this filter allows processing of direct peer-to-peer messages.

	Returns ShhFilter which you can either watch(callback) or request get_new_entries()

>>>web3.shh.newMessageFilter({'topic': '0x12340000', 'privateKeyID': recipient_private})
ShhFilter({'filter_id': 'b37c3106cfb683e8f01b5019342399e0d1d74e9160f69b27625faba7a6738554'})

	
Shh.deleteMessageFilter(self, filter_id)

	
	Deletes a message filter in the node.

	Returns True if the filter was sucesfully uninstalled, otherwise False

>>>web3.shh.deleteMessageFilter('b37c3106cfb683e8f01b5019342399e0d1d74e9160f69b27625faba7a6738554')
True

	
Shh.getMessages(self, filter_id)

	
	Retrieve messages that match the filter criteria and are received between the last time this function was called and now.

	Returns all new messages since the last invocation

>>>web3.shh.getMessages('b37c3106cfb683e8f01b5019342399e0d1d74e9160f69b27625faba7a6738554')
[{
 'ttl': 50,
 'timestamp': 1524497850,
 'topic': HexBytes('0x13370000'),
 'payload': HexBytes('0x74657374206d657373616765203a29'),
 'padding': HexBytes('0x50ab643f1b23bc6df1b1532bb6704ad947c2453366754aade3e3597553eeb96119f4f4299834d9989dc4ecc67e6b6470317bb3f7396ace0417fc0d6d2023900d3'),
 'pow': 6.73892030848329,
 'hash': HexBytes('0x7418f8f0989655ed2f4f9b496e6b1d9be51ef9f0f5ad89f6f750b0eee268b02f'),
 'recipientPublicKey': HexBytes('0x047d36c9e45fa82fcd27d35bc7d2fd41a2e41e512feec9e4b90ee4293ab12dc2cfc98250a6f5689b07650f8a5ca3a6e0fa8808cd0ce1a1962f2551354487a8fc79')
}]

	
Shh.setMaxMessageSize(self, size)

	
	Sets the maximal message size allowed by this node. Incoming and outgoing messages with a larger size will be rejected. Whisper message size can never exceed the limit imposed by the underlying P2P protocol (10 Mb).

	Returns True if the filter was sucesfully uninstalled, otherwise False

>>>web3.shh.setMaxMessageSize(1024)
True

	
Shh.setMinPoW(self, min_pow)

	
	Sets the minimal PoW required by this node.

	Returns True if the filter was sucesfully uninstalled, otherwise False

>>>web3.shh.setMinPoW(0.4)
True

	
Shh.markTrustedPeer(self, enode)

	
	Marks specific peer trusted, which will allow it to send historic (expired) messages.

	Returns True if the filter was sucesfully uninstalled, otherwise False

>>>web3.shh.markTrustedPeer('enode://d25474361659861e9e651bc728a17e807a3359ca0d344afd544ed0f11a31faecaf4d74b55db53c6670fd624f08d5c79adfc8da5dd4a11b9213db49a3b750845e@52.178.209.125:30379')
True

Asymmetric Keys

	
Shh.newKeyPair(self)

	
	Generates a new cryptographic identity for the client, and injects it into the known identities for message decryption

	Returns the new key pair’s identity

>>>web3.shh.newKeyPair()
'86e658cbc6da63120b79b5eec0c67d5dcfb6865a8f983eff08932477282b77bb'

	
Shh.addPrivateKey(self, key)

	
	Stores a key pair derived from a private key, and returns its ID.

	Returns the added key pair’s ID

>>>web3.shh.addPrivateKey('0x7b8190d96cd061a102e551ee36d08d4f3ca1f56fb0008ef5d70c56271d8c46d0')
'86e658cbc6da63120b79b5eec0c67d5dcfb6865a8f983eff08932477282b77bb'

	
Shh.deleteKeyPair(self, id)

	
	Deletes the specifies key if it exists.

	Returns True if the key pair was deleted, otherwise False

>>>web3.shh.deleteKeyPair('86e658cbc6da63120b79b5eec0c67d5dcfb6865a8f983eff08932477282b77bb')
True

	
Shh.hasKeyPair(self, id)

	
	Checks if the whisper node has a private key of a key pair matching the given ID.

	Returns True if the key pair exists, otherwise False

>>>web3.shh.hasKeyPair('86e658cbc6da63120b79b5eec0c67d5dcfb6865a8f983eff08932477282b77bb')
False

	
Shh.getPublicKey(self, id)

	
	Returns the public key associated with the key pair.

>>>web3.shh.getPublicKey('86e658cbc6da63120b79b5eec0c67d5dcfb6865a8f983eff08932477282b77bb')
'0x041b0777ceb8cf8748fe0bba5e55039d650a03eb0239a909f9ee345bbbad249f2aa236a4b8f41f51bd0a97d87c08e69e67c51f154d634ba51a224195212fc31e4e'

	
Shh.getPrivateKey(self, id)

	
	Returns the private key associated with the key pair.

>>>web3.shh.getPrivateKey('86e658cbc6da63120b79b5eec0c67d5dcfb6865a8f983eff08932477282b77bb')
'0x7b8190d96cd061a102e551ee36d08d4f3ca1f56fb0008ef5d70c56271d8c46d0'

Symmetric Keys

	
Shh.newSymKey(self)

	
	Generates a random symmetric key and stores it under id, which is then returned. Will be used in the future for session key exchange

	Returns the new key pair’s identity

>>>web3.shh.newSymKey()
'6c388d63003deb378700c9dad87f67df0247e660647d6ba1d04321bbc2f6ce0c'

	
Shh.addSymKey(self, key)

	
	Stores the key, and returns its ID.

	Returns the new key pair’s identity

>>>web3.shh.addSymKey('0x58f6556e56a0d41b464a083161377c8a9c2e95156921f954f99ef97d41cebaa2')
'6c388d63003deb378700c9dad87f67df0247e660647d6ba1d04321bbc2f6ce0c'

	
Shh.generateSymKeyFromPassword(self)

	
	Generates the key from password, stores it, and returns its ID.

	Returns the new key pair’s identity

>>>web3.shh.generateSymKeyFromPassword('shh secret pwd')
'6c388d63003deb378700c9dad87f67df0247e660647d6ba1d04321bbc2f6ce0c'

	
Shh.hasSymKey(self, id)

	
	Checks if there is a symmetric key stored with the given ID.

	Returns True if the key exists, otherwise False

>>>web3.shh.hasSymKey('6c388d63003deb378700c9dad87f67df0247e660647d6ba1d04321bbc2f6ce0c')
False

	
Shh.getSymKey(self, id)

	
	Returns the symmetric key associated with the given ID.

	Returns the public key associated with the key pair

>>>web3.shh.getSymKey('6c388d63003deb378700c9dad87f67df0247e660647d6ba1d04321bbc2f6ce0c')
'0x58f6556e56a0d41b464a083161377c8a9c2e95156921f954f99ef97d41cebaa2'

	
Shh.deleteSymKey(self, id)

	
	Deletes the symmetric key associated with the given ID.

	Returns True if the key pair was deleted, otherwise False

>>>web3.shh.deleteSymKey('6c388d63003deb378700c9dad87f67df0247e660647d6ba1d04321bbc2f6ce0c')
True

Personal API

	
class web3.personal.Personal

	

The web3.personal object exposes methods to interact with the RPC APIs
under the personal_ namespace.

Properties

The following properties are available on the web3.personal namespace.

	
web3.personal.listAccounts

	
	Delegates to personal_listAccounts RPC Method

Returns the list of known accounts.

>>> web3.personal.listAccounts
['0xd3cda913deb6f67967b99d67acdfa1712c293601']

Methods

The following methods are available on the web3.personal namespace.

	
web3.personal.importRawKey(self, private_key, passphrase)

	
	Delegates to personal_importRawKey RPC Method

Adds the given private_key to the node’s keychain, encrypted with the
given passphrase. Returns the address of the imported account.

>>> web3.personal.importRawKey(some_private_key, 'the-passphrase')
'0xd3cda913deb6f67967b99d67acdfa1712c293601'

	
web3.personal.newAccount(self, password)

	
	Delegates to personal_newAccount RPC Method

Generates a new account in the node’s keychain encrypted with the
given passphrase. Returns the address of the created account.

>>> web3.personal.newAccount('the-passphrase')
'0xd3cda913deb6f67967b99d67acdfa1712c293601'

	
web3.personal.lockAccount(self, account)

	
	Delegates to personal_lockAccount RPC Method

Locks the given account.

>>> web3.personal.lockAccount('0xd3cda913deb6f67967b99d67acdfa1712c293601')

	
web3.personal.unlockAccount(self, account, passphrase, duration=None)

	
	Delegates to personal_unlockAccount RPC Method

Unlocks the given account for duration seconds. If duration is
None then the account will remain unlocked indefinitely. Returns
boolean as to whether the account was successfully unlocked.

>>> web3.personal.unlockAccount('0xd3cda913deb6f67967b99d67acdfa1712c293601', 'wrong-passphrase')
False
>>> web3.personal.unlockAccount('0xd3cda913deb6f67967b99d67acdfa1712c293601', 'the-passphrase')
True

	
web3.personal.sendTransaction(self, transaction, passphrase)

	
	Delegates to personal_sendTransaction RPC Method

Sends the transaction.

Net API

	
class web3.net.Net

	

The web3.net object exposes methods to interact with the RPC APIs under
the net_ namespace.

Properties

The following properties are available on the web3.net namespace.

	
Net.chainId(self)

	This method is trivially implemented.
It will always return None, which is a valid chainId to specify in the transaction.

If you want the real chainId of your node, you must manually determine it for now.

Note that your transactions (may be) replayable on forks of the network you intend, if
Working with Local Private Keys and using a chainId of None.

>>> web3.net.chainId
None

	
Net.version(self)

	
	Delegates to net_version RPC Method

Returns the current network chainId/version.

>>> web3.net.version
1

Version API

	
class web3.version.Version

	

The web3.version object exposes methods to interact with the RPC APIs under
the version_ namespace.

Properties

The following properties are available on the web3.eth namespace.

	
Version.api(self)

	Returns the current Web3 version.

>>> web3.version.api
"2.6.0"

	
Version.node(self)

	
	Delegates to web3_clientVersion RPC Method

Returns the current client version.

>>> web3.version.node
'Geth/v1.4.11-stable-fed692f6/darwin/go1.7'

	
Version.network(self)

	
	Delegates to net_version RPC Method

Returns the current network protocol version.

>>> web3.version.network
1

	
Version.ethereum(self)

	
	Delegates to eth_protocolVersion RPC Method

Returns the current ethereum protocol version.

>>> web3.version.ethereum
63

TX Pool API

	
class web3.txpool.TxPool

	

The web3.txpool object exposes methods to interact with the RPC APIs under
the txpool_ namespace.

Properties

The following properties are available on the web3.txpool namespace.

	
TxPool.inspect

	
	Delegates to txpool_inspect RPC Method

Returns a textual summary of all transactions currently pending for
inclusing in the next block(s) as will as ones that are scheduled for
future execution.

>>> web3.txpool.inspect
{
 'pending': {
 '0x26588a9301b0428d95e6fc3a5024fce8bec12d51': {
 31813: ["0x3375ee30428b2a71c428afa5e89e427905f95f7e: 0 wei + 500000 × 20000000000 gas"]
 },
 '0x2a65aca4d5fc5b5c859090a6c34d164135398226': {
 563662: ["0x958c1fa64b34db746925c6f8a3dd81128e40355e: 1051546810000000000 wei + 90000 × 20000000000 gas"],
 563663: ["0x77517b1491a0299a44d668473411676f94e97e34: 1051190740000000000 wei + 90000 × 20000000000 gas"],
 563664: ["0x3e2a7fe169c8f8eee251bb00d9fb6d304ce07d3a: 1050828950000000000 wei + 90000 × 20000000000 gas"],
 563665: ["0xaf6c4695da477f8c663ea2d8b768ad82cb6a8522: 1050544770000000000 wei + 90000 × 20000000000 gas"],
 563666: ["0x139b148094c50f4d20b01caf21b85edb711574db: 1048598530000000000 wei + 90000 × 20000000000 gas"],
 563667: ["0x48b3bd66770b0d1eecefce090dafee36257538ae: 1048367260000000000 wei + 90000 × 20000000000 gas"],
 563668: ["0x468569500925d53e06dd0993014ad166fd7dd381: 1048126690000000000 wei + 90000 × 20000000000 gas"],
 563669: ["0x3dcb4c90477a4b8ff7190b79b524773cbe3be661: 1047965690000000000 wei + 90000 × 20000000000 gas"],
 563670: ["0x6dfef5bc94b031407ffe71ae8076ca0fbf190963: 1047859050000000000 wei + 90000 × 20000000000 gas"]
 },
 '0x9174e688d7de157c5c0583df424eaab2676ac162': {
 3: ["0xbb9bc244d798123fde783fcc1c72d3bb8c189413: 30000000000000000000 wei + 85000 × 21000000000 gas"]
 },
 '0xb18f9d01323e150096650ab989cfecd39d757aec': {
 777: ["0xcd79c72690750f079ae6ab6ccd7e7aedc03c7720: 0 wei + 1000000 × 20000000000 gas"]
 },
 '0xb2916c870cf66967b6510b76c07e9d13a5d23514': {
 2: ["0x576f25199d60982a8f31a8dff4da8acb982e6aba: 26000000000000000000 wei + 90000 × 20000000000 gas"]
 },
 '0xbc0ca4f217e052753614d6b019948824d0d8688b': {
 0: ["0x2910543af39aba0cd09dbb2d50200b3e800a63d2: 1000000000000000000 wei + 50000 × 1171602790622 gas"]
 },
 '0xea674fdde714fd979de3edf0f56aa9716b898ec8': {
 70148: ["0xe39c55ead9f997f7fa20ebe40fb4649943d7db66: 1000767667434026200 wei + 90000 × 20000000000 gas"]
 }
 },
 'queued': {
 '0x0f6000de1578619320aba5e392706b131fb1de6f': {
 6: ["0x8383534d0bcd0186d326c993031311c0ac0d9b2d: 9000000000000000000 wei + 21000 × 20000000000 gas"]
 },
 '0x5b30608c678e1ac464a8994c3b33e5cdf3497112': {
 6: ["0x9773547e27f8303c87089dc42d9288aa2b9d8f06: 50000000000000000000 wei + 90000 × 50000000000 gas"]
 },
 '0x976a3fc5d6f7d259ebfb4cc2ae75115475e9867c': {
 3: ["0x346fb27de7e7370008f5da379f74dd49f5f2f80f: 140000000000000000 wei + 90000 × 20000000000 gas"]
 },
 '0x9b11bf0459b0c4b2f87f8cebca4cfc26f294b63a': {
 2: ["0x24a461f25ee6a318bdef7f33de634a67bb67ac9d: 17000000000000000000 wei + 90000 × 50000000000 gas"],
 6: ["0x6368f3f8c2b42435d6c136757382e4a59436a681: 17990000000000000000 wei + 90000 × 20000000000 gas", "0x8db7b4e0ecb095fbd01dffa62010801296a9ac78: 16998950000000000000 wei + 90000 × 20000000000 gas"],
 7: ["0x6368f3f8c2b42435d6c136757382e4a59436a681: 17900000000000000000 wei + 90000 × 20000000000 gas"]
 }
 }
}

	
TxPool.status

	
	Delegates to txpool_status RPC Method

Returns a textual summary of all transactions currently pending for
inclusing in the next block(s) as will as ones that are scheduled for
future execution.

{
 pending: 10,
 queued: 7,
}

	
TxPool.content

	
	Delegates to txpool_content RPC Method

Returns the exact details of all transactions that are pending or queued.

>>> web3.txpool.content
{
 'pending': {
 '0x0216d5032f356960cd3749c31ab34eeff21b3395': {
 806: [{
 'blockHash': "0x00",
 'blockNumber': None,
 'from': "0x0216d5032f356960cd3749c31ab34eeff21b3395",
 'gas': "0x5208",
 'gasPrice': "0xba43b7400",
 'hash': "0xaf953a2d01f55cfe080c0c94150a60105e8ac3d51153058a1f03dd239dd08586",
 'input': "0x",
 'nonce': "0x326",
 'to': "0x7f69a91a3cf4be60020fb58b893b7cbb65376db8",
 'transactionIndex': None,
 'value': "0x19a99f0cf456000"
 }]
 },
 '0x24d407e5a0b506e1cb2fae163100b5de01f5193c': {
 34: [{
 'blockHash': "0x00",
 'blockNumber': None,
 'from': "0x24d407e5a0b506e1cb2fae163100b5de01f5193c",
 'gas': "0x44c72",
 'gasPrice': "0x4a817c800",
 'hash': "0xb5b8b853af32226755a65ba0602f7ed0e8be2211516153b75e9ed640a7d359fe",
 'input': "0xb61d27f600000000000000000000000024d407e5a0b506e1cb2fae163100b5de01f5193c0053444835ec58006000",
 'nonce': "0x22",
 'to': "0x7320785200f74861b69c49e4ab32399a71b34f1a",
 'transactionIndex': None,
 'value': "0x0"
 }]
 }
 },
 'queued': {
 '0x976a3fc5d6f7d259ebfb4cc2ae75115475e9867c': {
 3: [{
 'blockHash': "0x00",
 'blockNumber': None,
 'from': "0x976a3fc5d6f7d259ebfb4cc2ae75115475e9867c",
 'gas': "0x15f90",
 'gasPrice': "0x4a817c800",
 'hash': "0x57b30c59fc39a50e1cba90e3099286dfa5aaf60294a629240b5bbec6e2e66576",
 'input': "0x",
 'nonce': "0x3",
 'to': "0x346fb27de7e7370008f5da379f74dd49f5f2f80f",
 'transactionIndex': None,
 'value': "0x1f161421c8e0000"
 }]
 },
 '0x9b11bf0459b0c4b2f87f8cebca4cfc26f294b63a': {
 2: [{
 'blockHash': "0x00",
 'blockNumber': None,
 'from': "0x9b11bf0459b0c4b2f87f8cebca4cfc26f294b63a",
 'gas': "0x15f90",
 'gasPrice': "0xba43b7400",
 'hash': "0x3a3c0698552eec2455ed3190eac3996feccc806970a4a056106deaf6ceb1e5e3",
 'input': "0x",
 'nonce': "0x2",
 'to': "0x24a461f25ee6a318bdef7f33de634a67bb67ac9d",
 'transactionIndex': None,
 'value': "0xebec21ee1da40000"
 }],
 6: [{
 'blockHash': "0x00",
 'blockNumber': None,
 'from': "0x9b11bf0459b0c4b2f87f8cebca4cfc26f294b63a",
 'gas': "0x15f90",
 'gasPrice': "0x4a817c800",
 'hash': "0xbbcd1e45eae3b859203a04be7d6e1d7b03b222ec1d66dfcc8011dd39794b147e",
 'input': "0x",
 'nonce': "0x6",
 'to': "0x6368f3f8c2b42435d6c136757382e4a59436a681",
 'transactionIndex': None,
 'value': "0xf9a951af55470000"
 }, {
 'blockHash': "0x00",
 'blockNumber': None,
 'from': "0x9b11bf0459b0c4b2f87f8cebca4cfc26f294b63a",
 'gas': "0x15f90",
 'gasPrice': "0x4a817c800",
 'hash': "0x60803251d43f072904dc3a2d6a084701cd35b4985790baaf8a8f76696041b272",
 'input': "0x",
 'nonce': "0x6",
 'to': "0x8db7b4e0ecb095fbd01dffa62010801296a9ac78",
 'transactionIndex': None,
 'value': "0xebe866f5f0a06000"
 }],
 }
 }
}

Miner API

	
class web3.miner.Miner

	

The web3.miner object exposes methods to interact with the RPC APIs under
the miner_ namespace.

Properties

The following properties are available on the web3.miner namespace.

	
Miner.hashrate

	
	Delegates to eth_hashrate RPC Method

Returns the current number of hashes per second the node is mining with.

>>> web3.eth.hashrate
906

Note

This property is an alias to web3.eth.hashrate.

Methods

The following methods are available on the web3.miner namespace.

	
Miner.makeDAG(number)

	
	Delegates to miner_makeDag RPC Method

Generate the DAG for the given block number.

>>> web3.miner.makeDag(10000)

	
Miner.setExtra(extra)

	
	Delegates to miner_setExtra RPC Method

Set the 32 byte value extra as the extra data that will be included
when this node mines a block.

>>> web3.miner.setExtra('abcdefghijklmnopqrstuvwxyzABCDEF')

	
Miner.setGasPrice(gas_price)

	
	Delegates to miner_setGasPrice RPC Method

Sets the minimum accepted gas price that this node will accept when mining
transactions. Any transactions with a gas price below this value will be
ignored.

>>> web3.miner.setGasPrice(19999999999)

	
Miner.start(num_threads)

	
	Delegates to miner_start RPC Method

Start the CPU mining process using the given number of threads.

>>> web3.miner.start(2)

	
Miner.stop()

	
	Delegates to miner_stop RPC Method

Stop the CPU mining operation

>>> web3.miner.stop()

	
Miner.startAutoDAG()

	
	Delegates to miner_startAutoDag RPC Method

Enable automatic DAG generation.

>>> web3.miner.startAutoDAG()

	
Miner.stopAutoDAG()

	
	Delegates to miner_stopAutoDag RPC Method

Disable automatic DAG generation.

>>> web3.miner.stopAutoDAG()

Admin API

	
class web3.admin.Admin

	

The web3.admin object exposes methods to interact with the RPC APIs under the
admin_ namespace.

Properties

The following properties are available on the web3.admin namespace.

	
web3.admin.datadir

	
	Delegates to admin_datadir RPC Method

Returns the system path of the node’s data directory.

>>> web3.admin.datadir
'/Users/piper/Library/Ethereum'

	
web3.admin.nodeInfo

	
	Delegates to admin_nodeInfo RPC Method

Returns information about the currently running node.

>>> web3.admin.nodeInfo
{
 'enode': 'enode://e54eebad24dce1f6d246bea455ffa756d97801582420b9ed681a2ea84bf376d0bd87ae8dd6dc06cdb862a2ca89ecabe1be1050be35b4e70d62bc1a092cb7e2d3@[::]:30303',
 'id': 'e54eebad24dce1f6d246bea455ffa756d97801582420b9ed681a2ea84bf376d0bd87ae8dd6dc06cdb862a2ca89ecabe1be1050be35b4e70d62bc1a092cb7e2d3',
 'ip': '::',
 'listenAddr': '[::]:30303',
 'name': 'Geth/v1.4.11-stable-fed692f6/darwin/go1.7',
 'ports': {'discovery': 30303, 'listener': 30303},
 'protocols': {
 'eth': {
 'difficulty': 57631175724744612603,
 'genesis': '0xd4e56740f876aef8c010b86a40d5f56745a118d0906a34e69aec8c0db1cb8fa3',
 'head': '0xaaef6b9dd0d34088915f4c62b6c166379da2ad250a88f76955508f7cc81fb796',
 'network': 1,
 },
 },
}

	
web3.admin.peers

	
	Delegates to admin_peers RPC Method

Returns the current peers the node is connected to.

>>> web3.admin.peers
[
 {
 'caps': ['eth/63'],
 'id': '146e8e3e2460f1e18939a5da37c4a79f149c8b9837240d49c7d94c122f30064e07e4a42ae2c2992d0f8e7e6f68a30e7e9ad31d524349ec9d17effd2426a37b40',
 'name': 'Geth/v1.4.10-stable/windows/go1.6.2',
 'network': {
 'localAddress': '10.0.3.115:64478',
 'remoteAddress': '72.208.167.127:30303',
 },
 'protocols': {
 'eth': {
 'difficulty': 17179869184,
 'head': '0xd4e56740f876aef8c010b86a40d5f56745a118d0906a34e69aec8c0db1cb8fa3',
 'version': 63,
 },
 }
 },
 {
 'caps': ['eth/62', 'eth/63'],
 'id': '76cb6cd3354be081923a90dfd4cda40aa78b307cc3cf4d5733dc32cc171d00f7c08356e9eb2ea47eab5aad7a15a3419b859139e3f762e1e1ebf5a04f530dcef7',
 'name': 'Geth/v1.4.10-stable-5f55d95a/linux/go1.5.1',
 'network': {
 'localAddress': '10.0.3.115:64784',
 'remoteAddress': '60.205.92.119:30303',
 },
 'protocols': {
 'eth': {
 'difficulty': 57631175724744612603,
 'head': '0xaaef6b9dd0d34088915f4c62b6c166379da2ad250a88f76955508f7cc81fb796',
 'version': 63,
 },
 },
 },
 ...
]

Methods

The following methods are available on the web3.admin namespace.

	
web3.admin.addPeer(node_url)

	
	Delegates to admin_addPeer RPC Method

Requests adding a new remote node to the list of tracked static nodes.

>>> web3.admin.addPeer('enode://e54eebad24dce1f6d246bea455ffa756d97801582420b9ed681a2ea84bf376d0bd87ae8dd6dc06cdb862a2ca89ecabe1be1050be35b4e70d62bc1a092cb7e2d3@52.71.255.237:30303')
True

	
web3.admin.setSolc(solc_path)

	
	Delegates to admin_setSolc RPC Method

Sets the system path to the solc binary for use with the
eth_compileSolidity RPC method. Returns the output reported by solc
--version.

>>> web3.admin.setSolc('/usr/local/bin/solc')
"solc, the solidity compiler commandline interface\nVersion: 0.3.5-9da08ac3/Release-Darwin/appleclang/JIT"

	
web3.admin.startRPC(host='localhost', port='8545', cors="", apis="eth, net, web3")

	
	Delegates to admin_startRPC RPC Method

Starts the HTTP based JSON RPC API webserver on the specified host and
port, with the rpccorsdomain set to the provided cors value and
with the APIs specified by apis enabled. Returns boolean as to whether
the server was successfully started.

>>> web3.admin.startRPC()
True

	
web3.admin.startWS(host='localhost', port='8546', cors="", apis="eth, net, web3")

	
	Delegates to admin_startWS RPC Method

Starts the Websocket based JSON RPC API webserver on the specified host
and port, with the rpccorsdomain set to the provided cors value
and with the APIs specified by apis enabled. Returns boolean as to
whether the server was successfully started.

>>> web3.admin.startWS()
True

	
web3.admin.stopRPC()

	
	Delegates to admin_stopRPC RPC Method

Stops the HTTP based JSON RPC server.

>>> web3.admin.stopRPC()
True

	
web3.admin.stopWS()

	
	Delegates to admin_stopWS RPC Method

Stops the Websocket based JSON RPC server.

>>> web3.admin.stopWS()
True

Gas Price API

For Ethereum transactions, gas price is a delicate property. For this reason,
Web3 includes an API for configuring it.

By default, Web3 will not include a gasPrice in the transaction as to relay
this responsibility to the connected node. The Gas Price API allows you to
define Web3’s behaviour for populating the gas price. This is done using a
“Gas Price Strategy” - a method which takes the Web3 object and a transaction
dictionary and returns a gas price (denominated in wei).

Retrieving gas price

To retreive the gas price using the selected strategy simply call
generateGasPrice()

>>> Web3.eth.generateGasPrice()
20000000000

Creating a gas price strategy

A gas price strategy is implemented as a python method with the following
signature:

def gas_price_strategy(web3, transaction_params=None):
...

The method must return a positive integer representing the gas price in wei.

To demonstrate, here is a rudimentary example of a gas price strategy that
returns a higher gas price when the value of the transaction is higher than
1 Ether.

from web3 import Web3

def value_based_gas_price_strategy(web3, transaction_params):
 if transaction_params['value'] > Web3.toWei(1, 'ether'):
 return Web3.toWei(20, 'gwei')
 else:
 return Web3.toWei(5, 'gwei')

Selecting the gas price strategy

The gas price strategy can be set by calling setGasPriceStrategy().

from web3 import Web3

def value_based_gas_price_strategy(web3, transaction_params):
 ...

w3 = Web3(...)
w3.eth.setGasPriceStrategy(value_based_gas_price_strategy)

Available gas price strategies

	
web3.gas_strategies.rpc.rpc_gas_price_strategy(web3, transaction_params=None)

	Makes a call to the JSON-RPC eth_gasPrice
method [https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_gasprice] which returns
the gas price configured by the connected Ethereum node.

	
web3.gas_strategies.time_based.construct_time_based_gas_price_strategy(max_wait_seconds, sample_size, probability)

	Constructs a strategy which will compute a gas price such that the
transaction will be mined within a number of seconds defined by
max_wait_seconds with a probability defined by probability. The
gas price is computed by sampling sample_size of the most recently
mined blocks.

	max_wait_seconds The desired maxiumum number of seconds the
transaction should take to mine.

	sample_size The number of recent blocks to sample

	probability An integer representation of the desired probability that
the transaction will be mined within max_wait_seconds. 0 means 0%
and 100 means 100%.

The following ready to use versions of this strategy are available.

	web3.gas_strategies.time_based.fast_gas_price_strategy: Transaction mined within 60 seconds.

	web3.gas_strategies.time_based.medium_gas_price_strategy: Transaction mined within 5 minutes.

	web3.gas_strategies.time_based.slow_gas_price_strategy: Transaction mined within 1 hour.

	web3.gas_strategies.time_based.glacial_gas_price_strategy: Transaction mined within 24 hours.

Warning

Due to the overhead of sampling the recent blocks it is
recommended that a caching solution be used to reduce the amount of chain
data that needs to be re-fetched for each request.

from web3 import Web3, middleware
from web3.gas_strategies.time_based import medium_gas_price_strategy

w3 = Web3()
w3.eth.setGasPriceStrategy(medium_gas_price_strategy)

w3.middleware_stack.add(middleware.time_based_cache_middleware)
w3.middleware_stack.add(middleware.latest_block_based_cache_middleware)
w3.middleware_stack.add(middleware.simple_cache_middleware)

ENS API

Ethereum Name Service has a friendly overview.

Continue below for the detailed specs on each method and class in the ens module.

ens.main module

ens.exceptions module

Web3 Internals

Warning

This section of the documentation is for advanced users. You should probably stay away from these APIs if you don’t know what you are doing.

The Web3 library has multiple layers of abstraction between the public api
exposed by the web3 object and the backend or node that web3 is connecting to.

	Providers are responsible for the actual communication with the
blockchain such as sending JSON-RPC requests over HTTP or an IPC socket.

	Middlewares provide hooks for monitoring and modifying requests and
responses to and from the provider. These can be global operating on all
providers or specific to one provider.

	Managers provide thread safety and primatives to allow for asyncronous usage of web3.

Here are some common things you might want to do with these APIs.

	Redirect certain RPC requests to different providers such as sending all
read operations to a provider backed by Infura and all write operations
to a go-ethereum node that you control.

	Transparently intercept transactions sent over eth_sendTransaction, sign
them locally, and then send them through eth_sendRawTransaction.

	Modify the response from an RPC request so that it is returned in different
format such as converting all integer values to their hexadecimal
representation.

	Validate the inputs to RPC requests

Request Lifecycle

Each web3 RPC call passes through these layers in the following manner.

 *********** ************
 | Request | | Response |
 *********** ************
 | ^
 v |
+-----------------------------+
| Manager |
+-----------------------------+
 | ^
 v |
+-----------------------------+
| Global Middlewares |
+-----------------------------+
 | ^
 v |
+-----------------------------+
| Provider Middlewares |
+-----------------------------+
 | ^
 v |
+-----------------------------+
| Provider |
+-----------------------------+

You can visualize this relationship like an onion, with the Provider at the
center. The request originates from the Manager, outside of the onion, passing
down through each layer of the onion until it reaches the Provider at the
center. The Provider then handles the request, producing a response which will
then pass back out from the center of the onion, through each layer until it is
finally returned by the Manager.

In the situation where web3 is operating with multiple providers the same
lifecycle applies. The manager will iterate over each provider, returning the
response from the first provider that returns a response.

Providers

A provider is responsible for all direct blockchain interactions. In most
cases this means interacting with the JSON-RPC server for an ethereum node over
HTTP or an IPC socket. There is however nothing which requires providers to be
RPC based, allowing for providers designed for testing purposes which use an
in-memory EVM to fulfill requests.

In most simple cases you will be using a single provider. However, if you
would like to use Web3 with multiple providers, you can simply pass them in as
a list when instantiating your Web3 object.

>>> web3 = Web3([provider_a, provider_b])

Writing your own Provider

Writing your own provider requires implementing two required methods as well as
setting the middlewares the provider should use.

	
BaseProvider.make_request(method, params)

	Each provider class must implement this method. This method should
return a JSON object with either a 'result' key in the case of success,
or an 'error' key in the case of failure.

	method This will be a string representing the JSON-RPC method that
is being called such as 'eth_sendTransaction'.

	params This will be a list or other iterable of the parameters for
the JSON-RPC method being called.

	
BaseProvider.isConnected()

	This function should return True or False depending on whether the
provider should be considered connected. For example, an IPC socket
based provider should return True if the socket is open and False
if the socket is closed.

If a provider is unable to respond to certain RPC calls it should raise the
web3.exceptions.CannotHandleRequest exception. When this happens, the
request is issued to the next configured provider. If no providers are able to
handle the request then a web3.exceptions.UnhandledRequest error will be
raised.

	
BaseProvider.middlewares

	This should be an iterable of middlewares.

You can set a new list of middlewares by assigning to provider.middlewares,
with the first middleware that processes the request at the beginning of the list.

Middlewares

Note

The Middleware API in web3 borrows heavily from the Django middleware API introduced in version 1.10.0

Middlewares provide a simple yet powerful api for implementing layers of
business logic for web3 requests. Writing middleware is simple.

def simple_middleware(make_request, web3):
 # do one-time setup operations here

 def middleware(method, params):
 # do pre-processing here

 # perform the RPC request, getting the response
 response = make_request(method, params)

 # do post-processing here

 # finally return the response
 return response
 return middleware

It is also possible to implement middlewares as a class.

class SimpleMiddleware:
 def __init__(self, make_request, web3):
 self.web3 = web3
 self.make_request = make_request

 def __call__(self, method, params):
 # do pre-processing here

 # perform the RPC request, getting the response
 response = self.make_request(method, params)

 # do post-processing here

 # finally return the response
 return response

The make_request parameter is a callable which takes two
positional arguments, method and params which correspond to the RPC
method that is being called. There is no requirement that the make_request
function be called. For example, if you were writing a middleware which cached
responses for certain methods your middleware would likely not call the
make_request method, but instead get the response from some local cache.

By default, Web3 will use the web3.middleware.pythonic_middleware. This
middleware performs the following translations for requests and responses.

	Numeric request parameters will be converted to their hexadecimal representation

	Numeric responses will be converted from their hexadecimal representations to
their integer representations.

The RequestManager object exposes the middleware_stack object to manage middlewares. It
is also exposed on the Web3 object for convenience. That API is detailed in
Configuring Middleware.

Managers

The Manager acts as a gatekeeper for the request/response lifecycle. It is
unlikely that you will need to change the Manager as most functionality can be
implemented in the Middleware layer.

Conventions

The Web3 library follows the following conventions.

Bytes vs Text

	The term bytes is used to refer to the binary representation of a string.

	The term text is used to refer to unicode representations of strings.

Hexadecimal Representations

	All hexadecimal values will be returned as text.

	All hexadecimal values will be 0x prefixed.

Addresses

All addresses must be supplied in one of three ways:

	While connected to mainnet, an Ethereum Name Service name (often in the form myname.eth)

	A 20-byte hexadecimal that is checksummed using the EIP-55 [https://github.com/ethereum/EIPs/blob/master/EIPS/eip-55.md] spec.

	A 20-byte binary address.

Release Notes

	Breaking Change to Infura coming March 27th, 2019.

	After March 27th, you’ll need an API key to interact with Infura.
Sign up for one at https://infura.io/register.

v4.10.0

Released February 4, 2020

	Features

	Update mainnet ENS registrar address

See: https://docs.ens.domains/ens-migration/guide-for-dapp-developers

Original announcement about ENS registry location change:
https://medium.com/the-ethereum-name-service/ens-registry-migration-bug-fix-new-features-64379193a5a

v4.9.2

Released April 24, 2019

	Bugfixes

	Cast gas price values to integers in gas strategies
- #1304 [https://github.com/ethereum/web3.py/pull/1304]

	Misc

	Upgrade eth-tester version requirement
- #1333 [https://github.com/ethereum/web3.py/pull/1333]

v4.9.1

Released March 26, 2019

	Misc

	Add documentation about Infura Secret key environment variable
- #1303 [https://github.com/ethereum/web3.py/pull/1303]

v4.9.0

Released March 25, 2019

	Breaking Changes

	Raise error when connecting to Infura if there is no API key set
- #1296 [https://github.com/ethereum/web3.py/pull/1296]

	Features

	Allow users to optionally use their Infura API secret key
- #1298 [https://github.com/ethereum/web3.py/pull/1298]

	Misc

	Add deprecation warnings to JSON-RPC endpoints dropped in v5
- #1271 [https://github.com/ethereum/web3.py/pull/1271]

v4.8.3

Released February 21, 2019

	Misc

	Interact with Infura using an API Key. Key will be required after March 27th.
- #1250 [https://github.com/ethereum/web3.py/pull/1250]

v4.8.2

Released November 15, 2018

	Misc

	Reduce unneeded memory usage
- #1138 [https://github.com/ethereum/web3.py/pull/1138]

v4.8.1

Released October 28, 2018

	Features

	Add timeout for WebsocketProvider
- #1119 [https://github.com/ethereum/web3.py/pull/1119]

	Reject transactions that send ether to non-payable contract functions
- #1115 [https://github.com/ethereum/web3.py/pull/1115]

	Add Auto Infura Ropsten support: from web3.auto.infura.ropsten import w3
- #1124 [https://github.com/ethereum/web3.py/pull/1124]

	Auto-detect trinity IPC file location
- #1129 [https://github.com/ethereum/web3.py/pull/1129]

	Misc

	Require Python >=3.5.3
- #1107 [https://github.com/ethereum/web3.py/pull/1107]

	Upgrade eth-tester and eth-utils
- #1085 [https://github.com/ethereum/web3.py/pull/1085]

	Configure readthedocs dependencies and python version
- #1082 [https://github.com/ethereum/web3.py/pull/1082]

	soliditySha3 docs fixup
- #1100 [https://github.com/ethereum/web3.py/pull/1100]

	Update ropsten faucet links in troubleshooting docs

v4.7.2

Released September 25th, 2018

	Bugfixes

	IPC paths starting with ~ are appropriately resolved to the home directory
- #1072 [https://github.com/ethereum/web3.py/pull/1072]

	You can use the local signing middleware with bytes [https://docs.python.org/3.5/library/functions.html#bytes]-type addresses
- #1069 [https://github.com/ethereum/web3.py/pull/1069]

v4.7.1

Released September 11th, 2018

	Bugfixes

	old pip bug [https://github.com/pypa/pip/issues/4614] used during
release made it impossible for non-windows users to install 4.7.0.

v4.7.0

Released September 10th, 2018

	Features

	Add traceFilter method to the parity module.
- #1051 [https://github.com/ethereum/web3.py/pull/1051]

	Move web3.utils.datastructures to public namespace web3.datastructures
to improve support for type checking.
- #1038 [https://github.com/ethereum/web3.py/pull/1038]

	Optimization to contract calls
- #944 [https://github.com/ethereum/web3.py/pull/944]

	Bugfixes

	ENS name resolution only attempted on mainnet by default.
- #1037 [https://github.com/ethereum/web3.py/pull/1037]

	Fix attribute access error when attributedict middleware is not used.
- #1040 [https://github.com/ethereum/web3.py/pull/1040]

	Misc
- Upgrade eth-tester to 0.1.0-beta.32, and remove integration tests for py-ethereum.
- Upgrade eth-hash to 0.2.0 with pycryptodome 3.6.6 which resolves a vulnerability.

v4.6.0

Released Aug 24, 2018

	Features

	Support for Python 3.7, most notably in WebsocketProvider
- #996 [https://github.com/ethereum/web3.py/pull/996]

	You can now decode a transaction’s data to its original function call and arguments with:
contract.decode_function_input() - #991 [https://github.com/ethereum/web3.py/pull/991]

	Support for IPCProvider in FreeBSD (and more readme docs) - #1008 [https://github.com/ethereum/web3.py/pull/1008]

	Bugfixes

	Fix crash in time-based gas strategies with small number of transactions - #983 [https://github.com/ethereum/web3.py/pull/983]

	Fx crash when passing multiple addresses to w3.eth.getLogs() -
#1005 [https://github.com/ethereum/web3.py/pull/1005]

	Misc

	Disallow configuring filters with both manual and generated topic lists - #976 [https://github.com/ethereum/web3.py/pull/976]

	Add support for the upcoming eth-abi v2, which does ABI string decoding differently - #974 [https://github.com/ethereum/web3.py/pull/974]

	Add a lot more filter tests - #997 [https://github.com/ethereum/web3.py/pull/997]

	Add more tests for filtering with None. Note that geth & parity differ here. - #985 [https://github.com/ethereum/web3.py/pull/985]

	Follow-up on Parity bug that we reported upstream (parity#7816 [https://github.com/paritytech/parity-ethereum/issues/7816]): they resolved in 1.10. We
removed xfail on that test. - #992 [https://github.com/ethereum/web3.py/pull/992]

	Docs: add an example of interacting with an ERC20 contract - #995 [https://github.com/ethereum/web3.py/pull/995]

	A couple doc typo fixes

	#1006 [https://github.com/ethereum/web3.py/pull/1006]

	#1010 [https://github.com/ethereum/web3.py/pull/1010]

v4.5.0

Released July 30, 2018

	Features

	Accept addresses supplied in bytes [https://docs.python.org/3.5/library/functions.html#bytes] format (which does not provide checksum validation)

	Improve estimation of gas prices

	Bugfixes

	Can now use a block number with getCode() when connected to
EthereumTesterProvider (without crashing)

	Misc

	Test Parity 1.11.7

	Parity integration tests upgrade to use sha256 instead of md5

	Fix some filter docs

	eth-account upgrade to v0.3.0

	eth-tester upgrade to v0.1.0-beta.29

v4.4.1

Released June 29, 2018

	Bugfixes

	eth-pm package was renamed (old one deleted) which broke the web3 release.
eth-pm was removed from the web3.py install until it’s stable.

	Misc

	IPCProvider now accepts a pathlib.Path [https://docs.python.org/3.5/library/pathlib.html#pathlib.Path]
argument for the IPC path

	Docs explaining the new custom autoproviders in web3

v4.4.0

Released June 21, 2018

	Features

	Add support for https in WEB3_PROVIDER_URI environment variable

	Can send websocket connection parameters in WebsocketProvider

	Two new auto-initialization options:

	from web3.auto.gethdev import w3

	from web3.auto.infura import w3
(After setting the INFURA_API_KEY environment variable)

	Alpha support for a new package management tool based on ethpm-spec, see Package Manager API

	Bugfixes

	Can now receive large responses in WebsocketProvider by
specifying a large max_size in the websocket connection parameters.

	Misc

	Websockets dependency upgraded to v5

	Raise deprecation warning on getTransactionFromBlock()

	Fix docs for waitForTransactionReceipt()

	Developer Dockerfile now installs testing dependencies

v4.3.0

Released June 6, 2018

	Features

	Support for the ABI types like: fixedMxN [http://solidity.readthedocs.io/en/v0.4.24/abi-spec.html#types]
which is used by Vyper.

	In-flight transaction-signing middleware: Use local keys as if they were hosted keys
using the new sign_and_send_raw_middleware

	New getUncleByBlock() API

	New name getTransactionByBlock(), which replaces the deprecated
getTransactionFromBlock()

	Add several new Parity trace functions

	New API to resolve ambiguous function calls, for example:

	Two functions with the same name that accept similar argument types, like
myfunc(uint8) and myfunc(int8), and you want to call
contract.functions.myfunc(1).call()

	See how to use it at: Invoke Ambiguous Contract Functions Example

	Bugfixes

	Gas estimation doesn’t crash, when 0 blocks are available. (ie~ on the genesis block)

	Close out all HTTPProvider sessions, to squash warnings on exit

	Stop adding Contract address twice to the filter. It was making some nodes unhappy

	Misc

	Friendlier json encoding/decoding failure error messages

	Performance improvements, when the responses from the node are large
(by reducing the number of times we evaluate if the response is valid json)

	Parity CI test fixes (ugh, environment setup hell, thanks to the
community for cleaning this up!)

	Don’t crash when requesting a transaction that was created with the parity bug
(which allowed an unsigned transaction to be included, so publicKey is None)

	Doc fixes: addresses must be checksummed (or ENS names on mainnet)

	Enable local integration testing of parity on non-Debian OS

	README:

	Testing setup for devs

	Change the build badge from Travis to Circle CI

	Cache the parity binary in Circle CI, to reduce the impact of their binary API going down

	Dropped the dot: py.test -> pytest

v4.2.1

Released May 9, 2018

	Bugfixes

	When getting a transaction
with data attached and trying to modify it
(say, to increase the gas price), the data was not being reattached in
the new transaction.

	web3.personal.sendTransaction() was crashing when using a transaction
generated with buildTransaction()

	Misc

	Improved error message when connecting to a geth-style PoA network

	Improved error message when address is not checksummed

	Started in on support for fixedMxN ABI arguments

	Lots of documentation upgrades, including:

	Guide for understanding nodes/networks/connections

	Simplified Quickstart with notes for common issues

	A new Troubleshooting section

	Potential pypy performance improvements (use toolz instead of cytoolz)

	eth-tester upgraded to beta 24

v4.2.0

Released Apr 25, 2018

	Removed audit warning and opt-in requirement for w3.eth.account. See more in:
Working with Local Private Keys

	Added an API to look up contract functions: fn = contract.functions['function_name_here']

	Upgrade Whisper (shh) module to use v6 API

	Bugfix: set ‘to’ field of transaction to empty when using
transaction = contract.constructor().buildTransaction()

	You can now specify nonce in buildTransaction()

	Distinguish between chain id and network id – currently always return None for
chainId

	Better error message when trying to use a contract function that has 0 or >1 matches

	Better error message when trying to install on a python version <3.5

	Installs pypiwin32 during pip install, for a better Windows experience

	Cleaned up a lot of test warnings by upgrading from deprecated APIs, especially
from the deprecated contract.deploy(txn_dict, args=contract_args)
to the new contract.constructor(*contract_args).transact(txn_dict)

	Documentation typo fixes

	Better template for Pull Requests

v4.1.0

Released Apr 9, 2018

	New WebsocketProvider.
If you’re looking for better performance than HTTP, check out websockets.

	New w3.eth.waitForTransactionReceipt()

	Added name collision detection to ConciseContract and ImplicitContract

	Bugfix to allow fromBlock set to 0 in createFilter, like
contract.events.MyEvent.createFilter(fromBlock=0, ...)

	Bugfix of ENS automatic connection

	eth-tester support for Byzantium

	New migration guide for v3 -> v4 upgrade

	Various documentation updates

	Pinned eth-account to older version

v4.0.0

Released Apr 2, 2018

	Marked beta.13 as stable

	Documentation tweaks

v4.0.0-beta.13

Released Mar 27, 2018

This is intended to be the final release before the stable v4 release.

	Add support for geth 1.8 (fixed error on getTransactionReceipt())

	You can now call a contract method at a specific block
with the block_identifier keyword argument, see:
call()

	In preparation for stable release, disable w3.eth.account by default,
until a third-party audit is complete & resolved.

	New API for contract deployment, which enables gas estimation, local signing, etc.
See constructor().

	Find contract events with contract.events.$my_event.createFilter()

	Support auto-complete for contract methods.

	Upgrade most dependencies to stable

	eth-abi

	eth-utils

	hexbytes

	not included: eth-tester and eth-account

	Switch the default EthereumTesterProvider backend from eth-testrpc to eth-tester:
web3.providers.eth_tester.EthereumTesterProvider

	A lot of documentation improvements

	Test node integrations over a variety of providers

	geth 1.8 test suite

v4.0.0-beta.12

A little hiccup on release. Skipped.

v4.0.0-beta.11

Released Feb 28, 2018

	New methods to modify or replace pending transactions

	A compatibility option for connecting to geth --dev – see Geth-style Proof of Authority

	A new web3.net.chainId

	Create a filter object from an existing filter ID.

	eth-utils v1.0.1 (stable) compatibility

v4.0.0-beta.10

Released Feb 21, 2018

	bugfix: Compatibility with eth-utils v1-beta2
(the incompatibility was causing fresh web3.py installs to fail)

	bugfix: crash when sending the output of contract.functions.myFunction().buildTransaction()
to sendTransaction(). Now, having a chainID key does not crash
sendTransaction.

	bugfix: a TypeError when estimating gas like:
contract.functions.myFunction().estimateGas() is fixed

	Added parity integration tests to the continuous integration suite!

	Some py3 and docs cleanup

v4.0.0-beta.9

Released Feb 8, 2018

	Access event log parameters as attributes

	Support for specifying nonce in eth-tester

	Bugfix [https://github.com/ethereum/web3.py/pull/616]
dependency conflicts between eth-utils, eth-abi, and eth-tester

	Clearer error message when invalid keywords provided to contract constructor function

	New docs for working with private keys + set up doctests

	First parity integration tests

	replace internal implementation of w3.eth.account with
eth_account.account.Account [https://eth-account.readthedocs.io/en/latest/eth_account.html#eth_account.account.Account]

v4.0.0-beta.8

Released Feb 7, 2018, then recalled. It added 32MB of test data to git history,
so the tag was deleted, as well as the corresponding release.
(Although the release would not have contained that test data)

v4.0.0-beta.7

Released Jan 29, 2018

	Support for web3.eth.Eth.getLogs() in eth-tester with py-evm

	Process transaction receipts with Event ABI, using
Contract.events.myEvent(*args, **kwargs).processReceipt(transaction_receipt)
see Event Log Object for the new type.

	Add timeout parameter to web3.providers.ipc.IPCProvider

	bugfix: make sure idna package is always installed

	Replace ethtestrpc with py-evm, in all tests

	Dockerfile fixup

	Test refactoring & cleanup

	Reduced warnings during tests

v4.0.0-beta.6

Released Jan 18, 2018

	New contract function call API: my_contract.functions.my_func().call() is preferred over the now
deprecated my_contract.call().my_func() API.

	A new, sophisticated gas estimation algorithm, based on the https://ethgasstation.info approach.
You must opt-in to the new approach, because it’s quite slow. We recommend using the new caching middleware.
See web3.gas_strategies.time_based.construct_time_based_gas_price_strategy()

	New caching middleware that can cache based on time, block, or indefinitely.

	Automatically retry JSON-RPC requests over HTTP, a few times.

	ConciseContract now has the address directly

	Many eth-tester fixes. web3.providers.eth_tester.main.EthereumTesterProvider is now a
legitimate alternative to web3.providers.tester.EthereumTesterProvider.

	ethtest-rpc removed from testing. Tests use eth-tester only, on pyethereum. Soon it will be
eth-tester with py-evm.

	Bumped several dependencies, like eth-tester

	Documentation updates

v4.0.0-beta.5

Released Dec 28, 2017

	Improvements to working with eth-tester, using EthereumTesterProvider:

	Bugfix the key names in event logging

	Add support for sendRawTransaction()

	IPCProvider now automatically retries on a broken connection, like when you restart your node

	New gas price engine API, laying groundwork for more advanced gas pricing strategies

v4.0.0-beta.4

Released Dec 7, 2017

	New buildTransaction() method to prepare contract transactions, offline

	New automatic provider detection, for w3 = Web3() initialization

	Set environment variable WEB3_PROVIDER_URI to suggest a provider for automatic detection

	New API to set providers like: w3.providers = [IPCProvider()]

	Crashfix: web3.eth.Eth.filter() when retrieving logs with the argument ‘latest’

	Bump eth-tester to v0.1.0-beta.5, with bugfix for filtering by topic

	Removed GPL lib pylru, now believed to be in full MIT license compliance.

v4.0.0-beta.3

Released Dec 1, 2017

	Fix encoding of ABI types: bytes[] and string[]

	Windows connection error bugfix

	Bugfix message signatures that were broken ~1% of the time (zero-pad r and s)

	Autoinit web3 now produces None instead of raising an exception on from web3.auto import w3

	Clearer errors on formatting failure (includes field name that failed)

	Python modernization, removing Py2 compatibility cruft

	Update dependencies with changed names, now:

	eth-abi

	eth-keyfile

	eth-keys

	eth-tester

	eth-utils

	Faster Travis CI builds, with cached geth binary

v4.0.0-beta.2

Released Nov 22, 2017

Bug Fixes:

	sendRawTransaction() accepts raw bytes

	contract() accepts an ENS name as contract address

	signTransaction() returns the expected hash (after signing the transaction)

	Account methods can all be called statically, like: Account.sign(...)

	getTransactionReceipt() returns the status field as an int

	Web3.soliditySha3() looks up ENS names if they are supplied with an “address” ABI

	If running multiple threads with the same w3 instance, ValueError: Recursively called ... is no longer raised

Plus, various python modernization code cleanups, and testing against geth 1.7.2.

v4.0.0-beta.1

	Python 3 is now required

	ENS names can be used anywhere that a hex address can

	Sign transactions and messages with local private keys

	New filter mechanism: get_all_entries() and get_new_entries()

	Quick automatic initialization with from web3.auto import w3

	All addresses must be supplied with an EIP-55 checksum

	All addresses are returned with a checksum

	Renamed Web3.toDecimal() to toInt(), see: Type Conversions

	All filter calls are synchronous, gevent integration dropped

	Contract eventFilter() has replaced both Contract.on() and Contract.pastEvents()

	Contract arguments of bytes ABI type now accept hex strings.

	Contract arguments of string ABI type now accept python str.

	Contract return values of string ABI type now return python str.

	Many methods now return a bytes-like object where they used to return a hex string, like in Web3.sha3()

	IPC connection left open and reused, rather than opened and closed on each call

	A number of deprecated methods from v3 were removed

3.16.1

	Addition of ethereum-tester as a dependency

3.16.0

	Addition of named middlewares for easier manipulation of middleware stack.

	Provider middlewares can no longer be modified during runtime.

	Experimental custom ABI normalization API for Contract objects.

3.15.0

	Change docs to use RTD theme

	Experimental new EthereumTesterProvider for the ethereum-tester library.

	Bugfix for function type abi encoding via ethereum-abi-utils upgrade to v0.4.1

	Bugfix for Web3.toHex to conform to RPC spec.

3.14.2

	Fix PyPi readme text.

3.14.1

	Fix PyPi readme text.

3.14.0

	New stalecheck_middleware

	Improvements to Web3.toHex and Web3.toText.

	Improvements to Web3.sha3 signature.

	Bugfixes for Web3.eth.sign api

3.13.5

	Add experimental fixture_middleware

	Various bugfixes introduced in middleware API introduction and migration to
formatter middleware.

3.13.4

	Bugfix for formatter handling of contract creation transaction.

3.13.3

	Improved testing infrastructure.

3.13.2

	Bugfix for retrieving filter changes for both new block filters and pending
transaction filters.

3.13.1

	Fix mispelled attrdict_middleware (was spelled attrdict_middlware).

3.13.0

	New Middleware API

	Support for multiple providers

	New web3.soliditySha3

	Remove multiple functions that were never implemented from the original web3.

	Deprecated web3.currentProvider accessor. Use web3.provider now instead.

	Deprecated password prompt within web3.personal.newAccount.

3.12.0

	Bugfix for abi filtering to correctly handle constructor and fallback type abi entries.

3.11.0

	All web3 apis which accept address parameters now enforce checksums if the address looks like it is checksummed.

	Improvements to error messaging with when calling a contract on a node that may not be fully synced

	Bugfix for web3.eth.syncing to correctly handle False

3.10.0

	Web3 now returns web3.utils.datastructures.AttributeDict in places where it previously returned a normal dict.

	web3.eth.contract now performs validation on the address parameter.

	Added web3.eth.getWork API

3.9.0

	Add validation for the abi parameter of eth

	Contract return values of bytes, bytesXX and string are no longer converted to text types and will be returned in their raw byte-string format.

3.8.1

	Bugfix for eth_sign double hashing input.

	Removed deprecated DelegatedSigningManager

	Removed deprecate PrivateKeySigningManager

3.8.0

	Update pyrlp dependency to >=0.4.7

	Update eth-testrpc dependency to >=1.2.0

	Deprecate DelegatedSigningManager

	Deprecate PrivateKeySigningManager

3.7.1

	upstream version bump for bugfix in eth-abi-utils

3.7.0

	deprecate eth.defaultAccount defaulting to the coinbase account.

3.6.2

	Fix error message from contract factory creation.

	Use ethereum-utils for utility functions.

3.6.1

	Upgrade ethereum-abi-utils dependency for upstream bugfix.

3.6.0

	Deprecate Contract.code: replaced by Contract.bytecode

	Deprecate Contract.code_runtime: replaced by Contract.bytecode_runtime

	Deprecate abi, code, code_runtime and source as arguments for the Contract object.

	Deprecate source as a property of the Contract object

	Add Contract.factory() API.

	Deprecate the construct_contract_factory helper function.

3.5.3

	Bugfix for how requests library is used. Now reuses session.

3.5.2

	Bugfix for construction of request_kwargs within HTTPProvider

3.5.1

	Allow HTTPProvider to be imported from web3 module.

	make HTTPProvider accessible as a property of web3 instances.

3.5.0

	Deprecate web3.providers.rpc.RPCProvider

	Deprecate web3.providers.rpc.KeepAliveRPCProvider

	Add new web3.providers.rpc.HTTPProvider

	Remove hard dependency on gevent.

3.4.4

	Bugfix for web3.eth.getTransaction when the hash is unknown.

3.4.3

	Bugfix for event log data decoding to properly handle dynamic sized values.

	New web3.tester module to access extra RPC functionality from eth-testrpc

3.4.2

	Fix package so that eth-testrpc is not required.

3.4.1

	Force gevent<1.2.0 until this issue is fixed: https://github.com/gevent/gevent/issues/916

3.4.0

	Bugfix for contract instances to respect web3.eth.defaultAccount

	Better error reporting when ABI decoding fails for contract method response.

3.3.0

	New EthereumTesterProvider now available. Faster test runs than TestRPCProvider

	Updated underlying eth-testrpc requirement.

3.2.0

	web3.shh is now implemented.

	Introduced KeepAliveRPCProvider to correctly recycle HTTP connections and use HTTP keep alive

3.1.1

	Bugfix for contract transaction sending not respecting the
web3.eth.defaultAccount configuration.

3.1.0

	New DelegatedSigningManager and PrivateKeySigningManager classes.

3.0.2

	Bugfix or IPCProvider not handling large JSON responses well.

3.0.1

	Better RPC compliance to be compatable with the Parity JSON-RPC server.

3.0.0

	Filter objects now support controlling the interval through which they poll
using the poll_interval property

2.9.0

	Bugfix generation of event topics.

	Web3.Iban now allows access to Iban address tools.

2.8.1

	Bugfix for geth.ipc path on linux systems.

2.8.0

	
	Changes to the Contract API:

	
	Contract.deploy() parameter arguments renamed to args

	Contract.deploy() now takes args and kwargs parameters to allow
constructing with keyword arguments or positional arguments.

	Contract.pastEvents now allows you to specify a fromBlock or
``toBlock. Previously these were forced to be 'earliest' and
web3.eth.blockNumber respectively.

	Contract.call, Contract.transact and Contract.estimateGas are now
callable as class methods as well as instance methods. When called this
way, an address must be provided with the transaction parameter.

	Contract.call, Contract.transact and Contract.estimateGas now allow
specifying an alternate address for the transaction.

	
	RPCProvider now supports the following constructor arguments.

	
	ssl for enabling SSL

	connection_timeout and network_timeout for controlling the timeouts
for requests.

2.7.1

	Bugfix: Fix KeyError in merge_args_and_kwargs helper fn.

2.7.0

	Bugfix for usage of block identifiers ‘latest’, ‘earliest’, ‘pending’

	Sphinx documentation

	Non-data transactions now default to 90000 gas.

	Web3 object now has helpers set as static methods rather than being set at
initialization.

	RPCProvider now takes a path parameter to allow configuration for requests
to go to paths other than /.

2.6.0

	TestRPCProvider no longer dumps logging output to stdout and stderr.

	Bugfix for return types of address[]

	Bugfix for event data types of address

2.5.0

	All transactions which contain a data element will now have their gas
automatically estimated with 100k additional buffer. This was previously
only true with transactions initiated from a Contract object.

2.4.0

	Contract functions can now be called using keyword arguments.

2.3.0

	Upstream fixes for filters

	Filter APIs on and pastEvents now callable as both instance and class methods.

2.2.0

	The filters that come back from the contract on and pastEvents methods
now call their callbacks with the same data format as web3.js.

2.1.1

	Cast RPCProvider port to an integer.

2.1.0

	Remove all monkeypatching

2.0.0

	Pull in downstream updates to proper gevent usage.

	Fix eth_sign

	Bugfix with contract operations mutating the transaction object that is passed in.

	More explicit linting ignore statements.

1.9.0

	BugFix: fix for python3 only json.JSONDecodeError handling.

1.8.0

	BugFix: RPCProvider not sending a content-type header

	Bugfix: web3.toWei now returns an integer instead of a decimal.Decimal

1.7.1

	TestRPCProvider can now be imported directly from web3

1.7.0

	Add eth.admin interface.

	Bugfix: Format the return value of web3.eth.syncing

	Bugfix: IPCProvider socket interactions are now more robust.

1.6.0

	Downstream package upgrades for eth-testrpc and ethereum-tester-client to
handle configuration of the Homestead and DAO fork block numbers.

1.5.0

	Rename web3.contract._Contract to web3.contract.Contract
to expose it for static analysis and auto completion tools

	Allow passing string parameters to functions

	Automatically compute gas requirements for contract deployment and

	transactions.

	Contract Filters

	Block, Transaction, and Log filters

	web3.eth.txpool interface

	web3.eth.mining interface

	Fixes for encoding.

1.4.0

	Bugfix to allow address types in constructor arguments.

1.3.0

	Partial implementation of the web3.eth.contract interface.

1.2.0

	Restructure project modules to be more flat

	Add ability to run test suite without the slow tests.

	Breakup encoding utils into smaller modules.

	Basic pep8 formatting.

	Apply python naming conventions to internal APIs

	Lots of minor bugfixes.

	Removal of dead code left behing from 1.0.0 refactor.

	Removal of web3/solidity module.

1.1.0

	Add missing isConnected() method.

	Add test coverage for setProvider()

1.0.1

	Specify missing pyrlp and gevent dependencies

1.0.0

	Massive refactor to the majority of the app.

0.1.0

	Initial release

 Python Module Index

 e |
 w

 		 	

 		
 e	

 	
 	
 ens	

 		 	

 		
 w	

 	[image: -]
 	
 web3	

 	
 	
 web3.admin	

 	
 	
 web3.contract	

 	
 	
 web3.eth	

 	
 	
 web3.gas_strategies.rpc	

 	
 	
 web3.gas_strategies.time_based	

 	
 	
 web3.miner	

 	
 	
 web3.net	

 	
 	
 web3.personal	

 	
 	
 web3.pm	

 	
 	
 web3.shh	

 	
 	
 web3.txpool	

 	
 	
 web3.utils.filters	

 	
 	
 web3.version	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | U
 | V
 | W

A

 	
 	abi (web3.contract.Contract attribute)

 	accounts (web3.eth.Eth attribute)

 	add() (Web3.middleware_stack method)

 	addPeer() (in module web3.admin)

 	addPrivateKey() (web3.shh.Shh method)

 	address (web3.contract.Contract attribute)

 	
 	addSymKey() (web3.shh.Shh method)

 	Admin (class in web3.admin)

 	admin (web3.Web3 attribute)

 	all_functions() (web3.contract.Contract class method)

 	api() (web3.version.Version method)

 	attrdict_middleware() (web3.middleware method)

B

 	
 	BlockFilter (class in web3.utils.filters)

 	blockNumber (web3.eth.Eth attribute)

 	buildTransaction() (web3.contract.Contract.fallback method)

 	(web3.contract.ContractFunction method)

 	
 	bytecode (web3.contract.Contract attribute)

 	bytecode_runtime (web3.contract.Contract attribute)

C

 	
 	call() (web3.contract.Contract.fallback method)

 	(web3.contract.ContractFunction method)

 	(web3.eth.Eth method)

 	chainId() (web3.net.Net method)

 	clear() (Web3.middleware_stack method)

 	coinbase (web3.eth.Eth attribute)

 	ConciseContract (class in web3.contract)

 	construct_latest_block_based_cache_middleware() (web3.middleware method)

 	
 	construct_simple_cache_middleware() (web3.middleware method)

 	construct_time_based_cache_middleware() (web3.middleware method)

 	construct_time_based_gas_price_strategy() (in module web3.gas_strategies.time_based)

 	constructor() (web3.contract.Contract class method), [1], [2]

 	content (web3.txpool.TxPool attribute)

 	Contract (class in web3.contract)

 	contract() (web3.eth.Eth method)

 	ContractEvents (class in web3.contract)

 	ContractFunction (class in web3.contract)

D

 	
 	datadir (in module web3.admin)

 	decode_function_input() (web3.contract.Contract class method)

 	defaultAccount (web3.eth.Eth attribute)

 	defaultBlock (web3.eth.Eth attribute)

 	
 	deleteKeyPair() (web3.shh.Shh method)

 	deleteMessageFilter() (web3.shh.Shh method)

 	deleteSymKey() (web3.shh.Shh method)

 	deploy() (web3.contract.Contract class method)

E

 	
 	ens (module)

 	estimateGas() (web3.contract.Contract.fallback method)

 	(web3.contract.ContractFunction method)

 	(web3.eth.Eth method)

 	Eth (class in web3.eth)

 	
 	eth (web3.Web3 attribute)

 	ethereum() (web3.version.Version method)

 	EthereumTesterProvider (class in web3.providers.eth_tester)

 	eventFilter() (web3.contract.Contract class method)

 	events (web3.contract.Contract attribute)

F

 	
 	Filter (class in web3.utils.filters)

 	filter() (web3.eth.Eth method)

 	filter_id (web3.utils.filters.Filter attribute)

 	find_functions_by_args() (web3.contract.Contract class method)

 	
 	find_functions_by_name() (web3.contract.Contract class method)

 	format_entry() (web3.utils.filters.Filter method)

 	fromWei() (Web3 method)

 	functions (web3.contract.Contract attribute)

G

 	
 	gas_price_strategy_middleware() (web3.middleware method)

 	gasPrice (web3.eth.Eth attribute)

 	generateGasPrice() (web3.eth.Eth method)

 	generateSymKeyFromPassword() (web3.shh.Shh method)

 	get_all_entries() (web3.utils.filters.Filter method)

 	get_function_by_args() (web3.contract.Contract class method)

 	get_function_by_name() (web3.contract.Contract class method)

 	get_function_by_selector() (web3.contract.Contract class method)

 	get_function_by_signature() (web3.contract.Contract class method)

 	get_new_entries() (web3.utils.filters.Filter method)

 	get_package_from_manifest() (web3.pm.PM method)

 	getBalance() (web3.eth.Eth method)

 	getBlock() (web3.eth.Eth method)

 	getBlockTransactionCount() (web3.eth.Eth method)

 	getCode() (web3.eth.Eth method)

 	
 	getFilterChanges() (web3.eth.Eth method)

 	getFilterLogs() (web3.eth.Eth method)

 	getLogs() (web3.eth.Eth method)

 	getMessages() (web3.shh.Shh method)

 	getPrivateKey() (web3.shh.Shh method)

 	getPublicKey() (web3.shh.Shh method)

 	getStorageAt() (web3.eth.Eth method)

 	getSymKey() (web3.shh.Shh method)

 	getTransaction() (web3.eth.Eth method)

 	getTransactionByBlock() (web3.eth.Eth method)

 	getTransactionCount() (web3.eth.Eth method)

 	getTransactionFromBlock() (web3.eth.Eth method)

 	getTransactionReceipt() (web3.eth.Eth method)

 	getUncle() (web3.eth.Eth method)

 	getUncleByBlock() (web3.eth.Eth method)

H

 	
 	hashrate (web3.eth.Eth attribute)

 	(web3.miner.Miner attribute)

 	hasKeyPair() (web3.shh.Shh method)

 	
 	hasSymKey() (web3.shh.Shh method)

 	http_retry_request_middleware() (web3.middleware method)

 	HTTPProvider (web3.Web3 attribute)

I

 	
 	ImplicitContract (class in web3.contract)

 	importRawKey() (in module web3.personal)

 	info (web3.shh.Shh attribute)

 	inject() (Web3.middleware_stack method)

 	inspect (web3.txpool.TxPool attribute)

 	
 	IPCProvider (web3.Web3 attribute)

 	is_valid_entry() (web3.utils.filters.Filter method)

 	isAddress() (Web3 method)

 	isChecksumAddress() (Web3 method)

 	isConnected() (BaseProvider method)

L

 	
 	listAccounts (in module web3.personal)

 	
 	lockAccount() (in module web3.personal)

 	LogFilter (class in web3.utils.filters)

M

 	
 	make_request() (BaseProvider method)

 	make_stalecheck_middleware() (web3.middleware method)

 	makeDAG() (web3.miner.Miner method)

 	markTrustedPeer() (web3.shh.Shh method)

 	middlewares (BaseProvider attribute)

 	
 	Miner (class in web3.miner)

 	miner (web3.Web3 attribute)

 	mining (web3.eth.Eth attribute)

 	modifyTransaction() (web3.eth.Eth method)

 	myEvent() (web3.contract.ContractEvents method)

N

 	
 	name_to_address_middleware() (web3.middleware method)

 	Net (class in web3.net)

 	network() (web3.version.Version method)

 	newAccount() (in module web3.personal)

 	
 	newKeyPair() (web3.shh.Shh method)

 	newMessageFilter() (web3.shh.Shh method)

 	newSymKey() (web3.shh.Shh method)

 	node() (web3.version.Version method)

 	nodeInfo (in module web3.admin)

P

 	
 	peers (in module web3.admin)

 	Personal (class in web3.personal)

 	personal (web3.Web3 attribute)

 	
 	PM (class in web3.pm)

 	post() (web3.shh.Shh method)

 	pythonic_middleware() (web3.middleware method)

R

 	
 	remove() (Web3.middleware_stack method)

 	replace() (Web3.middleware_stack method)

 	
 	replaceTransaction() (web3.eth.Eth method)

 	rpc_gas_price_strategy() (in module web3.gas_strategies.rpc)

S

 	
 	sendRawTransaction() (web3.eth.Eth method)

 	sendTransaction() (in module web3.personal)

 	(web3.eth.Eth method)

 	set_data_filters() (web3.utils.filters.LogFilter method)

 	setContractFactory() (web3.eth.Eth method)

 	setExtra() (web3.miner.Miner method)

 	setGasPrice() (web3.miner.Miner method)

 	setGasPriceStrategy() (web3.eth.Eth method)

 	setMaxMessageSize() (web3.shh.Shh method)

 	setMinPoW() (web3.shh.Shh method)

 	setProviders() (web3.Web3 method)

 	setSolc() (in module web3.admin)

 	sha3() (Web3 class method)

 	
 	Shh (class in web3.shh)

 	shh (web3.Web3 attribute)

 	sign() (web3.eth.Eth method)

 	soliditySha3() (Web3 class method)

 	start() (web3.miner.Miner method)

 	startAutoDAG() (web3.miner.Miner method)

 	startRPC() (in module web3.admin)

 	startWS() (in module web3.admin)

 	status (web3.txpool.TxPool attribute)

 	stop() (web3.miner.Miner method)

 	stopAutoDAG() (web3.miner.Miner method)

 	stopRPC() (in module web3.admin)

 	stopWS() (in module web3.admin)

 	syncing (web3.eth.Eth attribute)

T

 	
 	TestRPCProvider (class in web3.providers.eth_tester)

 	toBytes() (Web3 method)

 	toChecksumAddress() (Web3 method)

 	toHex() (Web3 method)

 	toInt() (Web3 method)

 	toText() (Web3 method)

 	
 	toWei() (Web3 method)

 	transact() (web3.contract.Contract.fallback method)

 	(web3.contract.ContractFunction method)

 	TransactionFilter (class in web3.utils.filters)

 	TxPool (class in web3.txpool)

 	txpool (web3.Web3 attribute)

U

 	
 	uninstallFilter() (web3.eth.Eth method)

 	
 	unlockAccount() (in module web3.personal)

V

 	
 	Version (class in web3.version)

 	version (web3.shh.Shh attribute)

 	(web3.Web3 attribute)

 	
 	version() (web3.net.Net method)

W

 	
 	waitForTransactionReceipt() (web3.eth.Eth method)

 	Web3 (class in web3)

 	web3 (module)

 	web3.admin (module)

 	web3.contract (module)

 	web3.eth (module)

 	web3.gas_strategies.rpc (module)

 	web3.gas_strategies.time_based (module)

 	web3.miner (module)

 	web3.net (module)

 	
 	web3.personal (module)

 	web3.pm (module)

 	web3.providers.ipc.IPCProvider (built-in class)

 	web3.providers.rpc.HTTPProvider (built-in class)

 	web3.providers.tester.EthereumTesterProvider (class in web3.providers.eth_tester)

 	web3.providers.websocket.WebsocketProvider (built-in class)

 	web3.shh (module)

 	web3.txpool (module)

 	web3.utils.filters (module)

 	web3.version (module)

 _static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 Web3.py

 		
 Quickstart

 		
 Installation

 		
 Using Web3

 		
 Getting Blockchain Info

 		
 Overview

 		
 Providers

 		
 Base API

 		
 Type Conversions

 		
 Currency Conversions

 		
 Addresses

 		
 Cryptographic Hashing

 		
 Modules

 		
 Your Ethereum Node

 		
 Why do I need to connect to a node?

 		
 How do I choose which node to use?

 		
 Can I use MetaMask as a node?

 		
 Which network should I connect to?

 		
 Migrating your code from v3 to v4

 		
 Python 2 to Python 3

 		
 Filters

 		
 TestRPCProvider and EthereumTesterProvider

 		
 Changes to base API convenience methods

 		
 Web3.toDecimal()

 		
 Removed Methods

 		
 Provider Access

 		
 Disambiguating String Inputs

 		
 Contracts

 		
 Personal API

 		
 Filtering

 		
 Filter Class

 		
 Block and Transaction Filter Classes

 		
 Event Log Filters

 		
 Examples: Listening For Events

 		
 Synchronous

 		
 Asynchronous Filter Polling

 		
 Contracts

 		
 Contract Deployment Example

 		
 Contract Factories

 		
 Properties

 		
 Methods

 		
 Invoke Ambiguous Contract Functions Example

 		
 Event Log Object

 		
 Contract Functions

 		
 Methods

 		
 Fallback Function

 		
 Events

 		
 Utils

 		
 Providers

 		
 Choosing How to Connect to Your Node

 		
 Automatic vs Manual Providers

 		
 How Automated Detection Works

 		
 Examples Using Automated Detection

 		
 Provider via Environment Variable

 		
 Auto-initialization Provider Shortcuts

 		
 Infura Mainnet

 		
 Geth dev Proof of Authority

 		
 Built In Providers

 		
 HTTPProvider

 		
 IPCProvider

 		
 WebsocketProvider

 		
 EthereumTesterProvider

 		
 EthereumTesterProvider (legacy)

 		
 TestRPCProvider

 		
 AutoProvider

 		
 Using Multiple Providers

 		
 Ethereum Name Service

 		
 Setup

 		
 Usage

 		
 Name info

 		
 Set up your name

 		
 Middleware

 		
 Default Middleware

 		
 AttributeDict

 		
 .eth Name Resolution

 		
 Pythonic

 		
 Gas Price Strategy

 		
 HTTPRequestRetry

 		
 Configuring Middleware

 		
 Middleware Order

 		
 Middleware Stack API

 		
 Optional Middleware

 		
 Stalecheck

 		
 Cache

 		
 Geth-style Proof of Authority

 		
 Examples

 		
 Looking up blocks

 		
 Getting the latest block

 		
 Currency conversions

 		
 Looking up transactions

 		
 Looking up receipts

 		
 Working with Contracts

 		
 Interacting with an ERC20 Contract

 		
 Troubleshooting

 		
 Set up a clean environment

 		
 How do I use my MetaMask accounts from Web3.py?

 		
 How do I get ether for my test network?

 		
 Web3 API

 		
 Providers

 		
 Encoding and Decoding Helpers

 		
 Currency Conversions

 		
 Addresses

 		
 RPC APIS

 		
 web3.eth API

 		
 Properties

 		
 Methods

 		
 Filters

 		
 Contracts

 		
 Working with Local Private Keys

 		
 Local vs Hosted Nodes

 		
 Local vs Hosted Keys

 		
 Some Common Uses for Local Private Keys

 		
 Extract private key from geth keyfile

 		
 Sign a Message

 		
 Verify a Message

 		
 Verify a Message from message hash

 		
 Prepare message for ecrecover in Solidity

 		
 Verify a message with ecrecover in Solidity

 		
 Sign a Transaction

 		
 Sign a Contract Transaction

 		
 Package Manager API

 		
 Installation

 		
 Attaching

 		
 Methods

 		
 SHH API

 		
 Properties

 		
 Methods

 		
 Asymmetric Keys

 		
 Symmetric Keys

 		
 Personal API

 		
 Properties

 		
 Methods

 		
 Net API

 		
 Properties

 		
 Version API

 		
 Properties

 		
 TX Pool API

 		
 Properties

 		
 Miner API

 		
 Properties

 		
 Methods

 		
 Admin API

 		
 Properties

 		
 Methods

 		
 Gas Price API

 		
 Retrieving gas price

 		
 Creating a gas price strategy

 		
 Selecting the gas price strategy

 		
 Available gas price strategies

 		
 ENS API

 		
 ens.main module

 		
 ens.exceptions module

 		
 Web3 Internals

 		
 Request Lifecycle

 		
 Providers

 		
 Writing your own Provider

 		
 Middlewares

 		
 Managers

 		
 Conventions

 		
 Bytes vs Text

 		
 Hexadecimal Representations

 		
 Addresses

 		
 Release Notes

 		
 v4.10.0

 		
 v4.9.2

 		
 v4.9.1

 		
 v4.9.0

 		
 v4.8.3

 		
 v4.8.2

 		
 v4.8.1

 		
 v4.7.2

 		
 v4.7.1

 		
 v4.7.0

 		
 v4.6.0

 		
 v4.5.0

 		
 v4.4.1

 		
 v4.4.0

 		
 v4.3.0

 		
 v4.2.1

 		
 v4.2.0

 		
 v4.1.0

 		
 v4.0.0

 		
 v4.0.0-beta.13

 		
 v4.0.0-beta.12

 		
 v4.0.0-beta.11

 		
 v4.0.0-beta.10

 		
 v4.0.0-beta.9

 		
 v4.0.0-beta.8

 		
 v4.0.0-beta.7

 		
 v4.0.0-beta.6

 		
 v4.0.0-beta.5

 		
 v4.0.0-beta.4

 		
 v4.0.0-beta.3

 		
 v4.0.0-beta.2

 		
 v4.0.0-beta.1

 		
 3.16.1

 		
 3.16.0

 		
 3.15.0

 		
 3.14.2

 		
 3.14.1

 		
 3.14.0

 		
 3.13.5

 		
 3.13.4

 		
 3.13.3

 		
 3.13.2

 		
 3.13.1

 		
 3.13.0

 		
 3.12.0

 		
 3.11.0

 		
 3.10.0

 		
 3.9.0

 		
 3.8.1

 		
 3.8.0

 		
 3.7.1

 		
 3.7.0

 		
 3.6.2

 		
 3.6.1

 		
 3.6.0

 		
 3.5.3

 		
 3.5.2

 		
 3.5.1

 		
 3.5.0

 		
 3.4.4

 		
 3.4.3

 		
 3.4.2

 		
 3.4.1

 		
 3.4.0

 		
 3.3.0

 		
 3.2.0

 		
 3.1.1

 		
 3.1.0

 		
 3.0.2

 		
 3.0.1

 		
 3.0.0

 		
 2.9.0

 		
 2.8.1

 		
 2.8.0

 		
 2.7.1

 		
 2.7.0

 		
 2.6.0

 		
 2.5.0

 		
 2.4.0

 		
 2.3.0

 		
 2.2.0

 		
 2.1.1

 		
 2.1.0

 		
 2.0.0

 		
 1.9.0

 		
 1.8.0

 		
 1.7.1

 		
 1.7.0

 		
 1.6.0

 		
 1.5.0

 		
 1.4.0

 		
 1.3.0

 		
 1.2.0

 		
 1.1.0

 		
 1.0.1

 		
 1.0.0

 		
 0.1.0

_static/plus.png

_static/up.png

